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Abstract

EC paper authors form a complex network of co-authorship which is, by itself, an example of an
evolving system with its own rules, concept of fitness, and patterns of attachment. In this paper we
explore the network of authors of evolutionary computation papers found in a major bibliographic
database. We examine its macroscopic properties, and compare it with other co-authorship net-
works; the EC co-authorship network yields results in the same ballpark as other networks, but
exhibits some distinctive patterns in terms of internal cohesion. We also try to find some hints on
what makes an author a sociometric star. Finally, the role of proceeding editorship as the origin of
long-range links in the co-authorship network is studied as well.

Keywords: Evolutionary computation, sociometric studies, complex networks, scale-free net-
works, power laws, co-authorship networks.

1 Introduction

The study of all kind of networks has undergone an accelerated expansion in the last few years, after
the introduction of models for power-law (Barabási and Albert, 1999) and scale-free networks (Watts
and Strogatz, 1998), which, in turn, has induced the study of many different phenomena under this
new light. One of them have been co-authorship networks: nodes in these networks are paper authors,
joined by edges if they have written at least a paper in common. Even as most papers are written by
a few authors staying at the same institution, science is a global business nowadays, and lots of papers
are co-authored by scientists continents apart from each other. There are several interesting facts that
can be computed on these co-authorship networks: first, what kind of macroscopic values they yield,
and second, which are the most outstanding actors (authors) and edges (co-authorships) within this
network. A better understanding of the structure of the network and what makes some nodes stand
out goes beyond mere curiosity to give us some insight on the deep workings of science, what makes an
author popular, or some co-authors preferred over others.

Co-authorship networks are studied within the field of sociometry, and, in the case at hand, sci-
entometry. First studies date back to the second half of the nineties: Kretschmer (Kretschmer, 1997)
studied the invisible colleges of physics, finding that their behavior was not much different to other
collaboration networks, such as co-starring networks in movies. However, it was at the beginning of this
century when Newman (Newman, 2001a; Newman, 2001b) studied co-authorship networks as complex
networks, giving the first estimations of their overall shape and macroscopic properties. In general,
these kind of networks are both small worlds (Watts and Strogatz, 1998), that is, there is, on average,
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a short distance between any two scientists taken at random, and scale free, which means they follow
a power law (Barabási and Albert, 1999) in several node properties (e.g., the in-degree, or number of
nodes linking a particular one) . Newman made measurements on networks from several disciplines:
physics, medicine and computer science, showing results for clustering coefficients (related to transitiv-
ity in co-authorship networks), and mean and maximum distances (which gives an idea of the shape
of the network). Barabási and collaborators (Barabási et al., 2002) later proved that the scale free
structure of these co-authorship networks can be attributed to preferential attachment: authors that
have been more time in business publish more papers on average, and thus get more new links than new
authors. However, even as this model satisfactorily explains the overall structure of the network, there
must be much more in the author positions in the network than just having been there for more time.
In addition to these general works, several studies have also focused in particular scientific communi-
ties: computer support of cooperative work (Horn et al., 2004), psychology and philosophy (Cronin
et al., 2003), chemistry (Cronin et al., 2004), SIGMOD authors (Nascimento et al., 2003) and sociology
(Moody, 2004), to name a few.

In this work, we analyze the co-authorship network of evolutionary computation researchers. Study-
ing this network gives us a better understanding of its cohesiveness as a discipline, and sheds some light
on the collaboration patterns of the community. It also provides interesting hints about who are the
central actors in the network, and what determines their prominency in the area.

2 Materials and Methods

The bibliographical data used for the construction of the scientific-collaboration network in EC has been
gathered from the DBLP1 –Digital Bibliography & Library Project– computer Science bibliography
server, maintained by Michael Ley at the University of Trier. This database provides bibliographic
information on major computer science journals and proceedings, comprising more than 610,000 articles
and several thousand computer scientists (as of March 2005).

The database provides bibliographical data indexed by author and by conference/journal. This turns
out to be one of its advantages since, for example, the URL of the page containing the information for a
certain author can be used as identifying key for that author. To some extent this alleviates one of the
problems typically found in this kind of studies, namely the fact that a single author may report his/her
name differently on different papers (e.g., using the first name or just initials, including a middle name
or not, etc.)2. Of course, this kind of situation is still possible in this database, and indeed we have
found some instances of it. However, it seems that the maintainers of the database have put some care
in avoiding this issue.

Besides this indexing issue, the DBLP exhibits two additional advantages. Firstly, it is a “mod-
erated” database, meaning that it is not updated via authors’ submitting their references. On the
contrary, the maintainers add themselves new entries by inspecting published volumes, or incorporate
full BibTEX collections provided by publishers or editors. This eliminates a potential source of bias
in the sample of publications, i.e., some authors being very active in submitting their bibliographical
entries while other being less proactive in this sense. Finally, the second additional advantage is the
fact that DBLP pages are highly structured and regular. Hence they are very amenable for automated
parsing by a scraping program. In particular, hyperlinks are provided for every co-author of a paper,
making navigation through the database very easy.

The process to obtain the raw data is the following: our scraping robot is firstly fed with a collection
of DBLP author keys, stored in a stack. Subsequently, while this stack is not empty, a key is extracted
from it, and the corresponding HTML page is downloaded. Then, it is parsed to extract the textual
name of the author, and the papers he/she has authored. For each of these papers, the hyperlinks
of co-authors are identified, and added to the stack (cycles are avoided by keeping track of processed
authors using an ordered binary tree). An important issue to be taken into account is the fact that we
are interested in obtaining a network for the EC community. However, an EC author may also publish

1http://www.informatik.uni-trier.de/∼ley/db/
2A second kind of problem is possible: having two different authors with exactly the same name. We are not aware of

any glaring instance of this duplicity in the EC community.
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Table 1: Summary of results of the analysis of five scientific collaboration networks.

EC Medline Physics SPIRES NCSTRL
total papers 6199 2163923 98502 66652 13169
total authors 5492 1520251 52909 56627 11994
mean papers per author 2.9 6.4 5.1 11.6 2.6
mean authors per paper 2.56 3.75 2.53 8.96 2.22
collaborators per author 4.2 18.1 9.7 173.0 3.6
size of the giant component 3686 1395693 44337 49002 6396

as a percentage 67.1% 92.6% 85.4% 88.7% 57.2%
2nd largest component 36 49 18 69 42
clustering coefficient 0.798 0.066 0.43 0.726 0.496
mean distance 6.1 4.6 5.9 4.0 9.7
diameter (maximum distance) 18 24 20 19 31

articles in other fields; hence, we cannot blindly parse all entries in a certain page since non-EC papers
(and later on, non-EC authors) would be included in the network. To avoid this, we have used a double
check: firstly we look for certain patterns in the publication reference. These include the acronyms of
EC-specific conferences –such as GECCO, PPSN, EuroGP, etc.– or keywords –such as “Evolutionary
Computation”, “Genetic Programming”, etc.– that account for the relevant journals and/or additional
conferences. Papers with any of these strings in its publication reference are directly classified as EC
papers and parsed as described above. If this criterion is not fulfilled, then the title is scanned in order
to detect another set of relevant keywords such as “evolutionary algorithm”, “genetic algorithm”, etc.,
or acronyms such as “EA”, “GA” or “GP”. Again, if a paper triggers this criterion, it is classified as
an EC paper and processed accordingly. It must be noted that this system has turned out to be rather
accurate in detecting EC papers. Actually, the visual inspection of the resulting network indicated that
only a small fraction of false positives (well below 1% of the total number of papers) passed the filters.
These were mostly computational biology papers, and were readily removed from the network.

As a final consideration, we have chosen a large representative sample of authors as the seed of our
search robot. To be precise, we have used a collection composed of all authors that have published at
least one paper in the last five years in any of the following large EC conferences: GECCO, PPSN,
EuroGP, EvoCOP, and EvoWorkshops (unfortunately, CEC is not indexed in the DBLP; however, this
does not alter the macroscopic properties of the network, as it will be shown below). This way, the
immense majority of active EC researchers is guaranteed to be included in the sample. Actually, active
authors not publishing in these fora are in practice linked –directly or indirectly– with all likelihood
with authors who do publish in them. Just as an indication, the number of authors used as seed is
2,536 whereas the final number of authors in the network is 5,492, that is, more than twice as many.

3 Macroscopic Network Properties

The overall characteristics of the EC co-authorship network are shown in Table 1 alongside with results
obtained by Newman (Newman, 2001a). The latter correspond to co-authorship networks in Medline
(biomedical research), the Physics E-print Archive and SPIRES (several areas of physics and high-energy
physics respectively), and NCSTRL (several areas of computer science).

First of all, the number of EC papers and authors is much smaller than those for the communities
studied by Newman; however, it must be taken into account that these communities are much more
general and comprise different subareas. Notice also that in most aspects, EC data seems closer to
the NCSTRL database than to any other. This indicates that despite the interdisciplinary nature of
EC, the publication practices of this area are in general those of computer science. This way, average
scientific productivity per author (2.9) is not so high as in physics (5.1, 11.6) and biomedicine (6.4).
It nevertheless follows quite well Lotka’s Law of Scientific Productivity (Lotka, 1926), as shown by the
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Figure 1: (Left) Histogram of the number of papers per author. The slope of the dotted line is -2.00.
(Right) Histogram of the number of authors per paper. The slope of the dotted line is -5.27.

power law distribution illustrated in Fig. 1 (left). The most interesting feature is the long tail: while
most authors appear only once in the database, there are quite a few that have authored dozens of
papers.

The average size of collaborations (2.56) is also smaller than in biomedical research (3.75) or high-
energy physics (8.96), although similar to those of average physicists (2.53), and slightly superior to
average computer scientists (2.22). It also follows a power law (up from 3 authors) as shown in Fig. 1
(right). Notice the peak in the tail of the distribution, caused by the large collaborations implied by
proceedings. Their role will be examined in Sect. 4

Relevant considerations can be also done regarding the total number of collaborators per author
(4.2); physics and biomedicine are areas in which new collaborations seem more likely than in EC (9.7,
173.0, and 18.1). However, the figure for NCSTRL (3.6) is lower than for EC, thus suggesting that the
EC author is indeed open to new collaborations, as regarded from a computer science perspective. The
histogram of number of collaborators per authors (not shown) also fits quite well to a power law with
exponent -2.58. In this case, this power law can be attributed to a model of preferential attachment
such as the one proposed by Barabási (Barabási et al., 2002): new authors tend to link (be co-authors)
of those that have published extensively before. However, as we pointed out before, that cannot be
the whole story. For starters, information on who is the most prolific author is not usually available
(although educated guesses can go a long way), and, besides, there are strong constraints that avoid free
linking: a person can only tutor so many PhD students at the same time, for instance, and not everybody
is ready, or able, to move to the university of the professor she wants to work with. However, let us
point out that actors with many links do not necessarily coincide with the most prolific; they are rather
persons that have diverse interests, reflected in their choice or co-authors, participate in transnational
projects, or have a certain wanderlust, being visiting professors in many different institutions, which
leads them to co-author papers with their sponsors or hosts in those institutions. The fact that the
clustering coefficient (that is, the average fraction of an actor’s collaborators that are collaborators
themselves) in the EC co-authorship networks is so high, and the mean degree of separation is so
close to the proverbial six degrees, means that in general all authors in this field are no more than 6
degrees of separation of those sociometric stars with a wide variety of interests, projects or visits. These
sociometric stars will be analyzed more in depth in next section.

Another interesting aspect refers to the so-called giant component. This is a connected subset of
vertices whose size encompass most of the network. The remaining vertices group in components of
much smaller size (actually, independent of the total size of the network). As pointed out in (Newman,
2001a), the existence of this giant component is a healthy sign, for it shows that most of the community
is connected via collaboration, and hence by person-to-person contact ultimately. In the case of the
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Figure 2: Graphical representation of the giant component of the EC co-authorship network. A dense
core with heavily connected authors can be distinguished, with tendrils sprouting out of it that include
authors with less collaborators.

EC network, the giant component comprises more than 2/3 of the network (see Fig. 2), again superior
to the computer science network, but significantly smaller than for physics or biomedicine. This fact
is nevertheless counteracted by the high clustering coefficient (actually the highest of the set). This
indicates a much closer contact among actors, since one’s collaborators are very likely to collaborate
among themselves too. It is also significant that the mean distance among actors is halfway between
the medical/physics communities (around 4) and the computer science community (around 9), while
diameter is the second-smallest. This shows that the EC community is halfway between computer
science and more theoretical fields, such as physics.

4 Evolutionary Computation Sociometric Stars

In the previous section we have considered global collaboration patterns that can be inferred from
macroscopic properties of the network. Let us know take a closer look at the fine detail of the network
structure. More precisely, we are going to identify which actors play a more prominent role in the
network, and analyze why they are important. The term centrality is used to denote this prominency
status for a certain node.

Centrality can be measured in multiple ways. We are going to focus on metrics based on geodesics,
i.e., the shortest paths between actors in the network. These geodesics constitute a very interesting
source of information: the shortest path between two actors defines a “referral chain” of intermediate
scientists through whom contact may be established – cf. (Newman, 2001b). It also provides a sequence
of research topics (recall that common interests exist between adjacent links of this chain, as defined
by the co-authored papers) that may suggest future joint works.

The first geodesic-based centrality measure that we are going to analyze is betweenness (Freeman,
1977), i.e., the total number of geodesics between any two actors i, j that passes through a third actor
k. The rationale behind this measure lies in the information flow between actors: when a joint paper
is written, the authors exchange lots of information (research ideas, unpublished results, etc.) which
can in turn be transmitted (at least to some extent) to their colleagues in other papers, and so on.
Hence, actors with high betweenness are in some sense “hubs” that control this information flow; they
are recipients –and emitters– of huge amounts of cutting-edge knowledge; furthermore, their removal
from the network would result in the increase of geodesic distances among a large number of actors
(Wasserman and Faust, 1994).

The second centrality measure we are going to consider is precisely based on this geodesic distance.
Intuitively, the length of the shortest path indicates the number of steps that research ideas (and
in general, all kind of memes) require to jump from one actor to another. Hence, scientists whose
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Table 2: Most central actors in the EC network. D. E. Goldberg, author of one of the most famous
books on EC, figures prominently in all rankings, as well as Kalyanmoy Deb, who is a well known
author in theoretical EC and multi-objective optimization. The rest of the authors are well known as
conference organizers, or as leaders of some subfields within EC. The three columns show rankings for
three quantities: number of co-authors, and two centrality measures: betweenness and closeness.

# of co-workers betweenness closeness
1. K. Deb 98 K. Deb 19.06 K. Deb 28.60
2. D.E. Goldberg 75 D.E. Goldberg 14.24 W. Banzhaf 27.28
3. R. Poli 67 D. Corne 10.23 D.E. Golberg 26.87
4. M. Schoenauer 62 X. Yao 7.90 R. Poli 26.86
5. W. Banzhaf 58 W. Banzhaf 7.70 H.-G. Beyer 26.55
6. D. Corne 56 H. de Garis 6.92 P.L. Lanzi 26.50
7. X. Yao 56 R. Poli 6.86 D. Corne 25.93
8. J.A. Foster 54 J.J. Merelo 6.50 M. Schoenauer 25.73
9. J.J. Merelo 53 H. Iba 6.48 E.K. Burke 25.62
10. J.F. Miller 51 M. Schoenauer 6.33 D.B. Fogel 25.54
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Figure 3: (Left) Mean distance to other authors as a function of the number of collaborators. The
error bars indicate standard deviations. (Right) Percentile distribution of mean distances in the giant
component.

average distance to other scientists is small are likely to be the first to learn new information, and
information originating with them will reach others quicker than information originating with other
sources. Average distance (i.e., closeness) is thus a measure of centrality of an actor in terms of their
access to information.

The result of our centrality analysis of the EC network is shown in Table 2. The numbers provided
for each actor indicate the normalized values of betweenness and closeness (that is, their actual values
divided by the maximum possible value, expressed as a percentage). Regarding betweenness, the analysis
provides clear winners, with large numerical differences among the top actors. These differences are
not so marked for closeness values with all top actors clustered in a short interval. Notice that there
are some actors that appear in both top-lists. Using Milgram’s terminology (Milgram, 1967), these
constitute the sociometric superstars of the EC field.

Several factors are responsible for the prominent status of these actors. Obviously, scientific excel-
lence is one of them. This excellence is difficult to measure in absolute, objective terms, but the number
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Figure 4: (Left) Graphical representation of the network after removing proceedings. (Right) Compari-
son of the distribution of author distances with and without proceedings. The solid lines are eye-guides.

of collaborators provides some hints on it3. This quantity is shown for the top ten actors in the network
in Table 2. Certainly, some correlation between degree and centrality is evident. This is further illus-
trated in Fig. 3 (left). As it can be seen, there is a trend of decreasing average distance to other actors
as the actor degree increases. By crossing this information with the percentile distribution of distances
shown in Fig. 3 (right) we can obtain some interesting facts about the collaborative strength of elite
scientists. For example, consider the top 5% percentile; it is composed of actors whose average distance
to the remaining actors is at most 4.61. According to Fig. 3 (left), 23 collaborators are required at least
to have an average distance below this value. A more sensitive analysis indicates that 33 collaborators
are required to have an statistically significant (using a standard t-test) result.

Another important factor influencing the particular ranking shown above is the presence of confer-
ence proceedings among authors’ publications. These play a central role in the creation and structure
of the network, to the point that its features change dramatically if links arising from proceedings
co-authorship are removed. To begin with, the visual aspect of the network is different, as is shown in
the left hand side of Fig. 4 (compare it to the network with proceedings included, shown in Fig. 2).
The reader should notice that the core is much more diffuse (actually, it looks like there are several
micro-cores, plausibly corresponding to different EC subareas).

This change is also reflected in the right hand side of Fig. 4, which plots the histogram of average
distances from each node to the rest of the network: without proceedings, the average distance and
maximum distance increase by 2 units, and the modal distance increases by 3 units. The resulting dis-
tribution is also much more symmetric than the original distribution, which was notably skewed towards
low values. This can be explained by the very distinctive authoring (in property, editing) patterns of
proceedings: they are usually edited by a larger number of researchers, typically corresponding to the
different thematic areas included in the conference or symposium. These are often senior researchers,
with a prominent position in their subareas (thus, centrality and proceeding editorship reinforce each
other). Furthermore, the fact that editors come from different areas contribute to the creation of
long-distance links, resulting in a dramatic overall decrease of inter-actor distances.

Although proceeding editorship is certainly a scientific activity, and constitutes a valuable contri-
bution to the community, putting them at the same level of research papers is arguable at the very
least. It thus seems reasonable to exclude proceedings from the network to obtain a more unbiased
figure of centrality. We have done this, obtaining the results shown in Table 3. As it can be seen, there
is now a higher agreement between the two centrality measures (7/10 are the same, vs. 6/10 before).
Furthermore, researchers of unquestionable scientific excellence who were not in the previous ranking

3This quantity is strongly correlated with the number of papers (ρ = .82), and thus provides information on the
efficiency in knowledge transmission, which is the ultimate goal of scientific publishing. Involvement in PhD supervision
and research projects, and wide research interests will typically result in a higher number of collaborators as well.
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Table 3: Most central actors in the EC network after removing proceedings.

# of co-workers betweenness closeness
1. D.E. Goldberg 63 D.E. Goldberg 22.68 Z. Michalewicz 20.21
2. K. Deb 55 K. Deb 20.04 K. Deb 20.05
3. M. Schoenauer 52 M. Schoenauer 12.68 M. Schoenauer 19.89
4. X. Yao 42 H. de Garis 12.62 A.E. Eiben 19.77
5. H. de Garis 41 Z. Michalewicz 12.58 B. Paechter 19.70
6. T. Higuchi 40 T. Bäck 10.31 D.E. Goldberg 19.64
7. Z. Michalewicz 40 R.E. Smith 9.46 T. Bäck 18.70
8. L.D. Whitley 39 X. Yao 9.07 D.B. Fogel 18.59
9. M. Dorigo 38 A.E. Eiben 8.61 J.J. Merelo 18.52
10. J.J. Merelo 38 B. Paechter 8.05 T.C. Fogarty 18.50

do appear now. For example, Z. Michalewicz, author of several excellent EC books, is now the author
with the highest closeness, the 5th-highest betweeness, and the 7th-highest number of collaborators.
Overall, this may provide a more objective view on the central actors of our field.

5 Discussion and Conclusion

In this paper, we have made a preliminary study of the co-authorship network in the field of evolutionary
computation, paving the way to study the impact of certain measures, such as grants, the establishment
of scientific societies or new conferences, has on the subject. The general features of the network suggest
that it is quite similar to the field it can be better placed, computer science, but, at the same time,
authors are much more closely related with each other. We have also taken into account the impact
co-editorship of proceedings have on the overall aspect of the network and most centrality measures. To
the best of our knowledge, this issue had not been considered in previous related works, and we believe
it plays an important role in distorting some network properties. We suggest to not consider them in
the future in this kind of studies.

In connection to this latter issue, we believe that co-authorship networks created by different kind
of papers (technical reports, conference papers, journal papers) might be different owing to the different
kind of collaboration they imply. Consider that while technical reports may be written in a hurry and
present very preliminary results, conference papers are usually somewhat more long term, and journal
papers really indicate a committed scientific relationship (due to the long time they take to be published
and the several iterations of the revision process). The authors suggest to approach them separately
and analyze the features of the networks they yield.

In addition to this, our future lines of work along this topic will include the analysis of the network
evolution through time, as well as the impact funded scientific networks and transnational grants (such
as EU grants) have had on it. We also plan to study the existence of invisible colleges or communities
within the EC field, and analyze which their axes of development are, e.g., topical or regional.
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