
The Deputy Mehanism for Transparent

Proess Migration

Yuval Yarom

A thesis submitted in partial ful�llment

of the requirements for the degree of

Master of Siene

Supervised by Prof. Amnon Barak

Aknowledgment

I am greatly indebted to Prof. Amnon Barak for his help and guidane during all the stages of

this work. His advie and suggestions greatly inuened the shape of this thesis.

I would also like to thank Amnon Shiloh for sharing with me his immense experiene in de-

veloping distributed operating systems, and to all the Distributed Operating Systems lab. in the

Hebrew University.

Speial thanks go to Big Apple Pizza for their substantial support in times of need.

This researh was supported in part by a grant from the Ministry of Defense and in part by an

equipment grant from Intel Semiondutors (Israel).

i

Contents

1 Introdution 1

2 The Deputy Conept 4

2.1 The UNIX Proess . 4

2.1.1 system alls . 5

2.1.2 Signals . 5

2.2 Proess Migration . 6

2.2.1 The Rendezvous Problem . 6

2.2.2 Loation Transpareny . 7

2.3 Splitting the Proess . 8

3 Communiation 11

3.1 The Internet Protool Suite . 11

3.1.1 IP . 12

3.1.2 UDP . 14

3.1.3 TCP . 14

3.1.4 RDP . 15

3.1.5 RPC . 16

3.2 Intraproess ommuniation . 16

3.2.1 The Intraproess Transport Protool . 17

3.2.2 The Intraproess Protool . 17

3.2.3 TCP Modi�ations . 18

4 Implementation 19

4.1 The Body . 19

ii

4.2 The Deputy . 20

4.3 Interation Management . 21

4.4 Speial Cases . 23

4.4.1 Fork . 23

4.4.2 Migration . 23

5 Performane 26

5.1 Remote System Calls . 26

5.1.1 Measurement Tehnique . 26

5.1.2 Results . 27

5.1.3 A Closer Look on write() . 27

5.2 Overhead Dissetion . 28

5.2.1 Fatoring the Overhead . 28

5.2.2 Validating the Measurements . 32

5.3 Communiation Improvements . 33

5.3.1 FDDI . 33

5.3.2 Replaing TCP/IP . 34

6 Conlusions 35

Bibliography 36

iii

Chapter 1

Introdution

The most important goal of distributed operating systems is the ability to transparently share the

resoures of several mahines. In order to ahieve this goal the system must provide a mehanism

for using the various proessors of the system. Proess migration is one of the ommon mehanisms

for CPU sharing.

The Proess Migration mehanism enables the system to move a proess from one Proessing

Environment (PE), and ontinue its exeution in another. However, proess Migration alone does

not provide transpareny: a proess must interat with its environment, and for transparent sharing

of the system resoures, proess migration must be baked by other mehanisms.

This work presents the deputy mehanism for supporting transparent CPU sharing through

proess migration. This mehanism is based on the observation that the main body of the proess

is site independent, and an be transparently exeuted in any PE, while only a small part of it is

site dependent, and must be exeuted in a spei� PE. To ahieve transparent proess migration

the proess is divided into two parts: the deputy, whih ontains the site dependent parts of the

proess, and the body, whih ontains the rest. These two parts maintain a ommuniation hannel

between them. The body an be migrated, and exeutes normally on any PE, until it attempts to

exeute a site dependent operation. Suh an attempt is interepted by the kernel at the PE the

body is exeuting on, and forwarded to the deputy. The deputy then exeutes the operation on

behalf of the body, and returns it the result.

1

Related Work

Several systems support transparent proess migration. Mehanisms used to ahieve transpareny

vary between the various systems.

The Condor pakage [BLL92,Lis92℄ is a pakage that supports both hekpointing of proesses

and proess migration. The most notable feature of Condor is the fat that it is implemented

outside the system's kernel. As suh Condor is highly portable, but it su�ers both in performane

and in transpareny. The major limitations are for multiprogramming; no reation of new proesses

is allowed and interproess ommuniation is not supported. Whatever transpareny supported is

ahieved by an assigning for eah proess a shadow proess. The shadow is responsible for exeuting

the proess's system alls. The shadow di�ers from the deputy by being used only for the exeution

of system alls, while the deputy also ats as an alternate of the proess, and forwards asynhronous

events to the body.

Sprite [OCD88,Dou89℄ is a distributed operating system developed in the UC Berkeley. Sprite

supports a distributed �le system, thus making all �les aessible at eah PE. As ommuniation

mehanisms are implemented on top of the �le system, interproess ommuniation is also globally

available. The existene of this �le system makes transparent proess migration muh simpler.

Only a small number of system alls are site dependent, and these are forwarded to the home node

of the proess to be exeuted there. Sprite, unlike Condor, does not have a shadow for eah proess.

Instead a single server at eah PE serves all site dependent system alls.

The MOSIX operating system [BGW93℄ is a distributed operating system that supports trans-

parent proess migration and dynami load balaning. The MOSIX kernel is divided into three

parts: the lower kernel, whih is site-dependent, the upper-kernel whih provides the environment

for user proesses and is site-independent, and the linker whih is used for the ommuniation be-

tween the other two parts. This struture makes all system entities globally available to eah PE.

When a proess attempts aessing a resoure the upper-kernel at the PE that hosts the proess

forward the request via the linker to the lower kernel at the site the resoure is in. As all resoures

are globally available, all system alls are site-independent, and proess migration is transparent.

Amoeba [MRT90℄ ahieves loation transpareny by requiring that all interation between the

proess and its environment is done through a remote proedure all (RPC) mehanism, whih

provides the Amoeba equivalent for a system-all. The kernel at eah PE is responsible for loating

the aessed objet, and for forwarding the RPC to it. As suh, all resoures are globally available

2

to proesses, and RPCs are site-independent.

Organization of this Thesis

The seond hapter presents the deputy onept. The third hapter disusses the ommuniation

protool used between the deputy and the proess body. The implementation of a prototype of a

deputy-based system is desribed in Chapter 4. Chapter 5 presents some performane results.

3

Chapter 2

The Deputy Conept

This hapter presents the main onept developed in this thesis|the deputy. The deputy is that

part of a proess that annot be migrated, and must reside in the home of the proess, i.e. the

PE in whih the proess was reated. This splitting of a proess is used for ahieving transparent

proess migration.

The �rst setion disusses the UNIX onept of a proess. Transparent proess migration is

disussed in the next setion, and the idea of splitting the proess to ahieve transparent proess

migration is presented in the last setion.

2.1 The UNIX Proess

A proess is the exeution of a program. In the UNIX operating system [Ba86,LMKQ89℄ the

proess is the basi omputational unit. The system reates the illusion of onurrent exeution of

several proesses by sheduling the CPU and memory between the proesses.

A UNIX proess has two ontexts, the user ontext and the system ontext. The user ontext of

the proess ontains the program ode, stak and variables. The system ontext ontains desription

of the resoures the proess is attahed to, and a stak for the exeution of system ode on behalf

of the proess.

The proess interats with its environment using two mehanisms|system alls, and signals.

The following subsetions desribe these mehanisms.

4

2.1.1 system alls

System alls are the mehanism whih enables a UNIX proess to operate on a resoure. This

mehanism relieves the programmer from the need to program a �le system or a devie driver. In

this sense a system all is similar to a library funtion. In addition, by preventing diret aess to

resoures, the system an preserve the integrity of suh resoures.

Exeuting of a system all onsists of the following stages:

� System all arguments are stored in the runtime stak. These arguments inlude the user

supplied arguments, and a number identifying the system all.

� The proess transfer ontrol to the system. After this stage the proess is said to be exeuting

in system mode.

� The system opies the arguments from the user stak. Arguments are opied to prevent their

modi�ation during the system all exeution.

� The funtion that exeutes the system all is invoked. The address of the funtion is taken

from a dispath table using the system all identi�er as an index.

� When the funtion returns the system arranges for the reeipt of its result by the user's ode.

� Finally, the system returns ontrol to the program, and the proess returns to user mode.

During the exeution of a system all, the system might have to transfer data from the user

ontext to the system ontext. For example, when the proess reads from a �le the arguments it

gives to the system inlude and identi�er of the �le to be read, a pointer to a bu�er in the user's

address spae, and the size of this bu�er. The system then reads the data from the �le and has to

opy it to the user-supplied bu�er. As transferring the data between address spaes is a mahine

dependent operation, all suh data transfer is done through an interfae provided by a small number

of funtions, e.g. opyin() and opyout().

2.1.2 Signals

In order to inform the proess of the ourrene of exeptional or asynhronous events, the system

employs the signals mehanism. Whenever suh an event ours the appropriate signal is sent to

the proess. Exeptional events informed inlude aess to an illegal address, attempt to exeute

5

an illegal instrution, and similar events. Asynhronous events are events like the arrival of data

on a ommuniation port, or the user's hitting the `trl-C' key to terminate the proess.

Signals are modeled after hardware interrupts. Just as hardware interrupt has an interrupt

handler assoiated with it, so does eah signal have an ation to be taken when the signal is

delivered. The ation assoiated with a signal ranges from simply ignoring the signal, to exeuting

a speial funtion in the user's program, to the termination of a proess. In addition the proess

may elet to blok arriving signals and to delay the exeution of the ation assoiated with them.

Sending the signal to the proess onsists of two stages. The �rst stage is posting the signal.

This stage is exeuted in the ontext of whatever proess the system was exeuting when the event

ourred. First the system heks what the ation assoiated with the signal is. If it is to ignore the

signal, the signal is simply disarded, and nothing has to be done. If the proess does not ignore

the signal, the system noti�es it of the signal's ourrene. Finally the system wakes the proess

up if it is sleeping and needs to be wakened.

The seond stage is the signal delivery. In this stage the ation assoiated with the signal is

taken. Just before the system returns the proess to user mode, either after serving a system all,

or after handling a hardware interrupt, the system heks if any signals the proess does not blok

were posted to it. If it �nds suh a signal it arranges for the ation to be taken.

2.2 Proess Migration

A distributed system is able to share the CPU resoures of the system by using a faility known

as proess migration. To ahieve this sharing, the system takes a proess from one Proessing

Environment (PE), and ontinues its exeution on another.

One of the major features required in proess migration is transpareny. The funtional aspets

of the system's behavior should not be altered as a result of migrating a proess. Ahieving

transpareny requires solving two problems, namely: the rendezvous problem, and the loation

transpareny . These problems are desribed in the next subsetions.

2.2.1 The Rendezvous Problem

The rendezvous problem onsists of loating a migrating entity. Suppose, for example, that a

proess reates a hild proess, and asks the system to inform it of the termination of the hild.

By the time the hild proess terminates both proesses might have migrated several times. The

6

system at the PE on whih the hild proess terminates must be able to loate the original proess

to inform it.

One solution to this problem is assigning to eah proess a home PE. Whenever the proess

migrates it informs its home PE about its new loation. When any entity on any PE wants to

aess the proess it ontats the home, gets the loation of the proess, and an now aess the

proess. To redue the overhead inurred in ontating the home, the loation of a proess an

be ahed in the aessing PE, and the home has to be onsulted only if the ahe is empty or is

invalid.

The deision on whih PE is the home of a proess di�ers between systems. In the MOSIX

operating system the PE on whih the proess is reated is the home of the new proess. On Sprite

the home of the new proess is inherited from the reator. Both systems enode the home PE

number in the proess ID. When aess to the proess is required, its home identity an then be

extrated from its ID.

2.2.2 Loation Transpareny

Loation transpareny onsists of hiding the fat that the proess has migrated from the proess

itself. As long as the proess does not interat with its environment it an not beome aware of the

migration. When the proess interats with its environment (via a system all) the system must

ensure that the result of the interation does not depend on the site the proess urrently exeutes

in.

Loation transpareny an be ahieved by two methods. The �rst approah the system makes

all resoures aessible to eah PE. The system at the PE is responsible for ontating the site the

resoure is physially on. Employing this method reates an idential environment in eah PE, and

thus the result of system alls is independent of the site they are exeuted in. MOSIX [BGW93℄ is

a good example for suh a system. The linker in MOSIX hides the environment details from the

upper kernel. When the system all exeutes in the upper kernel, it is not aware of the loation

of resoures. The linker transparently redirets aesses to the resoure to the orret site, thus

making all system alls site independent.

The seond approah for ahieving loation transpareny is forwarding the system all to the

home PE of the proess, where it will be exeuted. For this approah to work, the home must be

inherited, otherwise a reated proess environment might di�er from that of the reating proess,

7

and the migration will not be transparent. The Condor pakage [BLL92,LiS92℄ uses this method.

For eah proess Condor reates a shadow proess in the home mahine, whih is responsible for

exeuting the system alls. Condor is implemented outside the system's kernel. As suh, it annot

implement all system alls, and is not ompletely transparent.

Sprite [OCD88℄ uses a hybrid approah. Most system alls are site independent due to the

distributed �le system it provides. Those system all whih are site dependent are forwarded to

the home PE of the proess to be exeuted there by a speial server that serves all environment

dependent system alls on the home PE.

2.3 Splitting the Proess

The onept of the deputy of a proess is based on the observation that only the system ontext of a

proess is site dependent. Generally the idea is that the user ontext of a proess is migrateable, and,

sine its interfae to the system ontext is well de�ned, it is possible to interept every interation

between the user and system ontexts, and forward this interation aross the network.

In order to migrate a proess we divide it to two parts: the body whih has all of the user

ontext and almost none of the system ontext of the proess, and the deputy whih has the rest

of the system ontext, and no user ontext (see Figure 2.1). The user ontext and the part of the

system ontext that is assoiated with the body are site independent. The body an, therefore, be

migrated to any PE in the system. The deputy has the site dependent part of the system ontext

of the proess, hene it must remain on the home PE of the proess. The two parts are onneted

by a ommuniation hannel, on whih interation between the two parts takes plae. Figure 2.1

shows an unsplit proess (proess A), and a split one (proess B).

Procwss A

Process B

(Deputy)

Process B

(Body)

Figure 2.1: Unsplit, and split proesses

8

Loation transpareny is ahieved by forwarding site dependent system all to the home PE.

System alls exeuted by the body are interepted by the remote PE's kernel. If the system all

is site independent it is exeuted in the remote PE, otherwise, the system all is forwarded to the

deputy. The deputy exeutes the system all on the home PE, and sends the result bak to the

body, whih then ontinues exeuting the user's ode.

The deputy mehanism is a variant of the home PE solution to the rendezvous problem. Instead

of providing the loation of the proess, the deputy provide a hannel to interat with the body.

The kernel at the home PE inform the deputy of asynhronous events, the deputy heks if there is

any ation to be taken, and inform the body if so. The body heks the ommuniation hannel for

reports of asynhronous events in the same loations a standard UNIX proess heks for signals.

We �nd the deputy onept a very appealing method of ahieving transpareny. The reasons

for this are that it provides a simple and lean solution to the transpareny problem. This solution

is robust, and will not be a�eted even by major modi�ations to the system. Some modi�ations,

suh as supporting a distributed �le system, might even improve the solution by making many

system alls site independent. Finally, the solution seems to be portable. It relies on almost

no mahine dependent features of the system, and thus will not hinder system porting to di�erent

arhitetures. In fat, it is not relying muh on UNIX spei� properties, and seem to be exportable

to other time sharing operating systems.

This solution has, however, some overhead on the exeution of system alls. For example, as

Figure 2.2 shows, data sent from one proess to another has a two hops over the network, instead of

just one hop. Additional overhead is inurred due to the need to hold enough state at the home PE,

and to keep a dediated ommuniation hannel. Furthermore, as the number of proesses inreases,

the home PE might beome the bottlenek of the system, thus putting a limit to saleability.

We believe that all of the problems raised above an be solved by additional mehanisms.

These mehanisms will make some of the resoures globally available, thus reduing the number

of site dependent system alls and improving the overall performane. Given the urrent memory

pries, the memory requirements overhead due to the need to keep the ommuniation links, and the

deputies an be negleted. Idle deputies do not require muh CPU resoures, and with reduing the

number of site dependent system alls, the deputies will be idle most of the time. The omputational

overhead in handling many ommuniation hannels an be solved by methods similar to those

desribed in [MKD92℄.

9

Body A Body B

Deputy A Deputy B

Home PE

Figure 2.2: The path of data sent from proess A to proess B

10

Chapter 3

Communiation

One of the major onerns in a distributed system is the protool used by ommuniating entities.

This hapter presents some of the standard ommuniation protools we had aess to, and our

hoie of protool for the intraproess ommuniation.

The system we worked on supports several ommuniation protool whih belong to di�erent

families. These protools inlude the User Datagram Protool (UDP), Transmission Control Proto-

ol (TCP), and Internet Protool (IP) of the Internet Protool suite; the Sequened Paket Protool

(SPP), and Internetwork Datagram Protool (IDP) of the Xerox Network System arhiteture; and

the Transmission Protool levels 0 and 4 (TP-0, and TP-4), Connetionless Transmission Protool

(CLTP), and Connetionless Network Protool (CLNP) of the ISO's Open Systems Interonnet

(OSI) ommuniation standard.

As the OSI protools implementation is still evolving, and the Xerox NS protools de�nition is

presently unavailable, the hoie of ommuniation protool for implementing the link between the

deputy and the proess naturally fell on the Internet Protool suite.

Setion 1 presents the Internet Protool suite, and Setion 2 desribes our hoie of protools

for the intraproess ommuniation.

3.1 The Internet Protool Suite

The Internet Protool suite is a set of ommuniation protools initially developed by the Defense

Advaned Researh Projets Ageny (DARPA). Like most networking protool suites, the Internet

Protool suite is a layered set of protools. Generally, there are 4 layers of protools:

11

� appliation protools suh as File Transfer or Remote Login

� transport protools suh as TCP and UDP

� the Internet Protool

� network interfae protools for hardware networks suh as Ethernet or FDDI.

These layers roughly orrespond to the appliation, transport, network, and data link layers of

the OSI referene model, respetively.

Appliation layer protools are too speialized to be used as the basis for the intraproess

ommuniation. This ommuniation requires some failities that are not supported by IP, e.g.

data demultiplexing, and reliability. As suh, IP (and the network interfae protools) an not be

used for our purposes. The hoie is, therefore, limited to the standard transport protools, TCP

and UDP, whih are desribed below. The following protools are also desribed: Reliable Data

Protool (RDP), Remote Proedure Call (RPC), and IP itself.

3.1.1 IP

The Internet Protool [Pos81a℄ is one of the major protools in the Internet Protool suite. It

orresponds to the network layer in the OSI referene model.

The transport protools pass to IP datagrams, and IP is responsible for transferring the data-

grams to the destination host. At the destination host the datagrams are passed to the transport

protool they belong to.

IP is based on the \atenet model" [Cer78℄. A atenet is a olletion of independent networks

interonneted by gateways. Figure 3.1 shows an example of a atenet omprised of two networks

interonneted by a gateway.

IP hides the network struture from the upper layer protools. It provides the following om-

muniation servies:

� Fragmentation and reassembly. Underlying network hardware may be inapable of transfer-

ring large datagrams. IP fragments datagrams that are too large for the network hardware,

sends all fragments as separate datagrams to the destination host, and reassembles the frag-

ments at the destination host.

12

Network A

Network B

Gateway

Figure 3.1: A atenet omprised of two networks

� Routing. The destination host is not neessarily on the loal physial network. IP is respon-

sible for routing the datagram through the gateways to the destination host.

� Status ommuniation. IP reports the upper layers protool of the status of outgoing data-

grams. Events reported inlude the destination being unreahable, datagram time-out, et.

IP employs a best e�ort delivery sheme. This means the IP layer attempts delivering the

datagram to the destination host, but it does not guarantee that the datagram is, eventually,

delivered, or even that a delivery failure is reported to the user.

IP datagrams may be lost, dupliated, arrive out of sequene, arrive with errors, or any ombi-

nation of the above. It only guarantee that a delivered datagram is delivered to the right destination

host, and is transferred to the transport protool it belongs to. IP does not support other network-

ing issues suh as ow ontrol, and ongestion ontrol. The support of these servies is left for the

upper layer protools.

13

3.1.2 UDP

The User Datagram Protool [Pos80℄ is a simple, unreliable, onnetionless, transport protool.

UDP enhanes the servies provided by IP by multiplexing and demultiplexing datagrams in the

soure and destination hosts, respetively, and optionally adds some reliability by deteting errors

in delivered datagrams.

UDP de�nes, in eah host, a set of ports. Ports are abstrat destination points identi�ed by a

positive integer. Datagrams arriving at a host are demultiplexed aording to the destination port

number. Eah UDP datagram inludes the soure port number, whih spei�es the port number

to whih replies should be sent.

Most implementation of UDP support the notion of a UDP onnetion. A UDP onnetion is

de�ned by the host addresses, and the port numbers, of the ommuniating entities. The semantis

of a UDP onnetion are that eah entity an send datagrams to the other entity only, and that

datagrams sent from other entities to either sides of the onnetion are disarded. No handshaking,

or reliability mehanisms are supported by the onnetion.

Error detetion is done by adding a 16 bit heksum to eah outgoing datagram. This heksum

is heked in inoming datagrams, and if an error is deteted the datagram is disarded. There

is no need to report the soure host of the disarded datagram beause datagram delivery is not

guaranteed by UDP.

3.1.3 TCP

The Transmission Control Protool [Pos81b℄ is the main transport layer protool provided by the

Internet Protools suite. TCP provides for onnetions of bidiretional reliable transfer of streams

of data. It also handles ongestion and ow ontrol.

TCP, like UDP, de�nes a set of ports in eah host. A TCP onnetion is de�ned by the host

addresses and the port numbers on both sides of the onnetion. The onnetion is handled as two

unidiretional onnetions, with eah side ating as both sender and reeiver. Control data of a

reeiver side may be, however, piggybaked on outgoing data pakets.

TCP is a sliding window protool. The sender keeps a transmit window whih slides aross

the data stream, and may only send data from within the window. When the reeiver reeives

in-sequene data it aknowledges the sender of the data reeipt, the sender transmit window is

moved to after the aknowledged data, and new data an be sent. The reeiver keeps a reeive

14

window whih is idential to the transmit window of the sender. By disposing an inoming data

that does not �t in the window or already exists in it, the reeiver is able to overome dupliate

messages. An out of sequene data is inserted to the reeive window, but is not aknowledged until

all the preeding data is reeived.

Data loss is handled by retransmission. When a data byte is sent a timer is started. If the timer

expires before the data is aknowledged, the data is retransmitted, and the timer is started again.

To avoid ongestion due to retransmissions, TCP employs an exponential bako� timer strategy.

The value of the retransmission timers grows exponentially with the number of retransmissions.

This prevents possible ongestion in the network by reduing the network traÆ volume.

The window size used by the sender is not onstant. The reeiver noti�es the sender of the

available bu�er spae in the reeiver, and the sender uses this value as a limit to the window size.

This method provides ow ontrol to TCP.

A TCP onnetion is established using a three way handshake protool. During onnetion

establishment both parties exhange some information required for onnetion management. This

information inludes the reeive window size, the sequene number of the �rst data byte, and the

maximum size of eah TCP segment.

A segment is the term by whih TCP refers to the data sent in one IP datagram. Sine the

probability of a datagram loss grows with the number of transmitted fragments, TCP attempts

at passing IP datagrams that need no fragmentation. This is done by eah side informing the

other what is the maximum segment size his loal network an handle with no fragmentation. The

maximum segment size used by a onnetion is the minimum of these two values.

Most TCP implementations implement the Nagle algorithm [Nag84℄ to oalese short segments.

A sender employing this algorithm bu�ers outgoing data when it expets some more data to be

sent. Generally if there is outstanding unaknowledged data, the sending TCP bu�ers data until

the outstanding data is aknowledged, or it an send a full segment.

3.1.4 RDP

The Reliable Data Protool [VHS84, PaH90℄ is an experimental internet protool whih supports

reliable datagram-based onnetions.

RDP is a sliding window protool. As the basi data unit in RDP is a datagram, the window

size is de�ned by the number of datagrams the sender an transmit. Unlike TCP, RDP allows two

15

types of aknowledgment. A umulative aknowledgment is used to aknowledge all datagrams

up to a spei�ed one. A seletive aknowledgment an be used by the reeiver to aknowledge

datagrams arriving out of sequene. (TCP does not support this aknowledgment type.)

The advantages of RDP over TCP are its simpliity, the fat that it preserves message bound-

aries, and its ability to transfer datagrams at the order they arrived, and not the order they were

sent.

3.1.5 RPC

Unlike the aforementioned protools, the Remote Proedure Call [Sun88℄ is not a transport layer

protool. It orrespond to the session layer of the OSI referene model. The onept of a remote

proedure all is based on the lient-server model of ommuniation. In this model one of the

ommuniating entities|the server|provides servies for other entities|the lients. These servies

vary from server to server. They an be as simple as reporting the urrent time, or as ompliated

as providing aess to a global database.

The remote proedure all ommuniation model is a type of lient-server ommuniation model,

in whih the server exeutes a proedure in behalf of the lient. RPC de�nes the format of the

lient request, and the server reply. It does not deal with the nature of the underlying transport

protool. If the underlying protool is not reliable RPC adds reliability by request retransmission.

Eah request is identi�ed by a unique request ID. This ID enables the server to detet dupliate

messages, and the lient to math the reply with a request.

3.2 Intraproess ommuniation

When hoosing the transport protool to be used for the ommuniation between the deputy and

the body we had to onsider several requirements. For the exeution of system alls the protool

must be reliable. As the protool will usually be used for transfer of many small pakets, it should

also have short lateny. Sine the network is a ommon resoure, the protool should have as small

network overhead as possible, and as the network might be used for transferring large amounts of

data the protool must also be able to handle ongestion.

This setion presents the onsiderations used in seleting the protools for the intraproess

ommuniation, and modi�ations applied to the transport protool.

16

3.2.1 The Intraproess Transport Protool

Of the three transport layer protools desribed above the hoie, naturally falls on TCP. Raw

UDP does not satisfy the requirements beause it is inherently unreliable. Adding reliability in the

intraproess protool is most likely to be less eÆient then existing protools, and is very likely to

indue problems due to inorret design or implementation.

RDP might have been suitable for the requirements had it supported any mehanism for on-

gestion handling. The lak of ongestion ontrol is made more ritial by the fat that RDP relies

on IP to fragment and reassemble datagrams. If any of the fragments is lost the rest are kept in

the destination mahine until they are timed out, and the datagram is lost. A lost fragment will,

therefore, hold resoures for the remaining fragments in the destination mahine, thus worsening

the ongestion.

When a datagram is lost RDP has to retransmit the omplete datagram again. The probability

of datagram loss is almost proportional to the number of fragments omposing the datagram.

1

Sending large datagrams is, therefore, more likely to ause datagram loss, and thus retransmission

of the omplete datagram. The probabilities of TCP segment loss are of ourse, not smaller, but

TCP has only to send the lost segment, and not the omplete datagram, thus reduing the volume

of data sent over the network, and avoiding ongestion even more.

3.2.2 The Intraproess Protool

The hoie of the intraproess protool is simpler. The only standard andidate is RPC, whih

does not suit our needs. RPC is using XDR for data representation. The translation between host

representation and XDR representation inurs heavy overhead on eah transmitted paket.

The remote proedure all model �ts the remote system all exeution semantis. It an also

aommodate the semantis of the deputy aess to the body's memory during a system all by

delaring the body as a server for the duration of the system all. The relationship between the

deputy and the body annot, however, be desribed by the standard lient-server model, as either

might initiate request to the other. The remote proedure all model an, therefore, never desribe

this relationship, and RPC is not a suitable ommuniation protool.

Sine the standard protool does not satisfy the requirements, a dediated protool was de-

1

The exat probability is 1�(1�P)

n

, where P is the probability of a paket loss, and n is the number of fragments.

For the typial values of P = 10

�3

, and n = 6 the probability is 0:00598503.

17

veloped. This protool is not a general protool like RPC, but provides ad ho solutions for the

problem at hand. As the protool is tightly onneted to the implementation it is desribed in

Chapter 4.

3.2.3 TCP Modi�ations

The urrent transport protool used for the intraproess ommuniation is a modi�ed version of

TCP. Using some tuning and minor modi�ations we were able to improve the system performane

onsiderably. The modi�ations, and their rationale are desribed here.

First, and most important, we inhibited the Nagle algorithm. This is supported by the system,

but is not a default option. This option was disabled beause the intraproess protool sometimes

sends two onseutive replies. With outgoing data oalesene the seond reply is delayed for an

average period of 100ms, whih is far too long for a system all.

Another hange of the defaults was in enabling the keep-alive option, and modifying its param-

eters to lose onnetions that are idle for more than 30 seonds. This option is not neessary for

the system's operation, but it enables faster garbage olletion in the presene of hosts or network

rashes.

The last modi�ation is the removal of the TCP heksum. TCP provides error detetion

by adding a heksum to eah segment transmitted. This heksum is required in the standard

internet environment, as some of the networks omprising it may inur errors. All modern networks

provide error heking, and guarantee that delivered pakets are delivered orretly. Hene, the

TCP heksum in suh an environment is redundant. The omputation of this heksum, and its

validation amounts to a signi�ant part of the proessing required by the protool. Removing this

heksum redued lateny by 20%. We believe this gain justi�es the deviation from the standard.

18

Chapter 4

Implementation

This hapter presents the implementation of the deputy mehanism. The mehanism is implemented

on top of the Berkeley Software Design, In. BSD/386 system. BSD/386 is a system derived from

the 4.3BSD Network Release 2 operating system, developed in UC Berkeley.

The �rst two setions present the strutures of the proess body and the deputy. The interation

between the two is desribed in the third setion. Some speial ases are presented in the fourth

setion.

4.1 The Body

Previous hapters stated that the body is the user ontext of a proess. This is basially true, but

as a proess in UNIX must have a system ontext for basi system mehanisms to operate on, the

body is implemented as a omplete UNIX proess.

Eah body has a ommuniation hannel assoiated with it. Data transmitted on this hannel

arrives to the deputy, and data transmitted from the deputy arrives to the body's hannel.

When the user ode of the proess exeutes a system all, the kernel heks if the proess is a

loal proess, or a body of a proess from a remote PE. In the �rst ase the standard dispath table

is used to handle the system all. In the seond ase a seond dispath table is onsulted. Values at

this seond dispath table an be of three types: loal, remote, and speial. Loal system alls are

exeuted at the PE whih hosts the body of the proess. Remote system alls are simply forwarded

to the PE whih has the deputy, and are exeuted there. Speial system alls are those system alls

that require speial ation to be taken. Of the 146 system alls supported by the BSD/386, 9 are

19

loal, 133 are remote, and only 4 are speial.

During the exeution of the system all, the deputy might have to aess the user address spae

of the proess. These ases are handled by requests sent from the deputy, and served by the body.

This mehanism is also used by the deputy for other requests, e.g. setting up memory when running

a new program using the exeve() system all.

Most of the body's memory management is handled at the host PE. The only exeption to

this are page in requests from the �le system. This exeption is essential, as �le systems di�er in

di�erent PEs. Paging from a �le ours frequently in pure exeutables, where the �le is mapped

to the proess's memory, and is paged in on demand. Paging from a �le will also our as a result

of the mmap() system all whih is used to map �les to the proess's address spae. This paging

is handled by sending the deputy a request for data. The deputy then reads the data and sends it

to the body.

The body, like a standard proess, heks for signals before the transit to user mode. Signals

are, however, treated in a di�erent way. Synhronous signals, suh as oating point overow,

or segmentation violation, whih are generated by the PE in whih the body is exeuting, are

forwarded to the deputy. The deputy is responsible for proessing the signals, deiding what ation

to take, and informing the body of this ation. When heking for signals, the body also heks if

the deputy had requested its attention, and if so it sends a null request to the deputy.

4.2 The Deputy

The deputy is implemented as a UNIX proess. The deputy, unlike regular proesses, has only

system ontext, and no user ontext. Like the body, the deputy has a ommuniation hannel,

whih is used to ommuniate with the body.

Generally, the deputy is in a wait state, waiting for the ourane of an event. When an

event ours, the deputy handles it, and when it �nishes it returns to the wait state. An event

an be either a request from it's body, or the posting of a signal to the proess. In ase of an

asynhronous event, e.g. the posting of a signal, the deputy sends the body a request to initiate

a ommuniation transation. This request is required to avoid rae onditions that might result

from the asynhronous nature of the event.

While serving the request the deputy might have to aess the user's address spae. Aess

attempts should be interepted and sent to the body. To enable this, the interfae from the system

20

ontext to the user memory is modi�ed. Funtions like opyin() and opyout() �rst hek if the

running proess is a deputy. If it is not, the standard funtion is exeuted. Otherwise a request for

data transfer is sent to the body, whih handles the transfer.

4.3 Interation Management

The body and the deputy ommuniate over a ommuniation hannel using a modi�ed version

of TCP as the transport protool. The rationale for using TCP and the modi�ation applied, are

explained in Chapter 3.

The interation between the body and the deputy is done in transations. A transation starts

when the body asks the deputy to perform a task on its behalf, and ends after the deputy handles

the request and reports the body of all asynhronous events that had ourred sine the previous

transation. This way the body is always the initiator of transations, and the deputy always

terminates it.

For the exeution of a system all, the body sends the system all number and arguments to the

deputy. For simple system alls, suh as soket() or lose(), the deputy exeutes the system all, and

returns its result. Then, if no asynhronous events are pending, the deputy informs the body that

the transation terminates. Figure 4.1 (A) demonstrates the ow ontrol during the exeution of

the soket system all. If no asynhronous events are pending the transation termination message

is piggybaked on the system all result message.

BodyDeputy

Transaction termination

Reply from socket

Socket system call

Deputy Body

Close system call

Reply from close

Signal catch request

Transaction termination

Signal catch reply

A B

Transaction termination

C

Read system call

Copyout request

Copyout result

Reply from read

Deputy Body

Figure 4.1: Communiation ow in various system alls

If there are asynhronous events pending, the deputy requests the body to take the appropriate

ation before terminating the transation. This situation is demonstrated in Figure 4.1 (B), where

21

the proess reeives a signal it arranged to ath during the exeution of a lose system all. In this

ase the system all immediately terminates, and the body is requested to arrange for the exeution

of the signal handler.

As already mentioned, in some system alls the deputy might aess the user data spae.

Figure 4.1 (C) shows the ow ontrol in the system all read(), when the deputy exeutes one

opyout request.

When a signal is sent at the proess, the deputy has to inform the proess of the ation to be

taken. If the deputy is in the middle of serving a body's request, it has nothing to do until it is

done serving, when the ation will be sent to the proess. If, however, the deputy is not serving a

request, it sends the body a request to initiate a transation. The body will respond by sending a

null request. This null request will initiate a transation, and the deputy will inform the body of

the ation to be taken before it terminates the transation. The sequene of operations taken in

this ase is shown in Figure 4.2 (A).

BodyDeputy Deputy Body

A B

Transaction request

Null request

Signal catch request

Signal catch reply

Transaction termination

System call

System call reply

Signal catch reply

Transaction termination

Signal catch request

Transaction request

Figure 4.2: Communiation ow in signal handling

The �rst two messages may seem to be redundant; it may seem that it is possible for the deputy

to initiate a transation, and send the ation as the �rst message. The problem with this sheme

is that it may ause a rae ondition. If the body has sent a system all request, whih have not

yet arrived, or will attempt to send a request before it reeives the ation, both sides will have to

agree on whih event ourred �rst. To preserve the UNIX [LMKQ89℄ semantis, this ation should

always be the system all. The deputy will then have to roll-bak all of the signal proessing it

did, serve the system all, and proess the signal again. The body annot keep the signal ation,

and exeutes it after the system all sine the system all might blok the signal, or modify the

22

ation to be taken. Eliminating the transation and null request messages will result in greater

omplexity in the deputy and, as signals are not very frequent, seems to be unneessary.

If the same rae ondition ours between the transation request message and a system all,

the body simply ignores the transation request. The deputy is waiting for a request from the body,

and will serve a system all if it arrives after sending the transation request. When the system

all is done, the deputy will proess the signal, and send the ation to the body. Figure 4.2 (B) is

an example of the ow in this ase.

4.4 Speial Cases

This setion presents two speial ases; the fork() system all, whih reates a new proess, and

the migrate() system all, whih is a new system all that moves the proess to another mahine.

4.4.1 Fork

In BSD/386, like UNIX, the only way for a user to reate a new proess is to invoke the fork()

system all. The invoking proess is alled the parent proess, and the newly reated proess is

alled the hild proess. On return from the system all the hild proess is an exat dupliate of

the parent. The two di�er only in the proess ID.

When a proess whose body have migrated forks both deputy and body are forked, and a

ommuniation hannel is established between the two parts of the hild proess. Figure 4.3 shows

some of the stages in aomplishing this. We start from one split proess (A). The body sends a

request to the deputy to open a ommuniation hannel, and forks a new deputy (B). The body

then forks, leaving the new ommuniation hannel for the hild body.

As the deputy forks in the middle of the transation, both parent and hild deputies send the

transation termination message. The parent deputy forks after it reeives the termination signal.

When forking the body, are should be taken that the hild waits for a termination message on his

hannel.

4.4.2 Migration

The system supports a new system all that moves the body to a new PE. Migrating the proess

involves several stages. These stages are depited in Figure 4.4.

23

deputy
Parent
deputy deputy

Parent

body

Parent

Parent
body

Parent
body

Parent

body
Child

B CA

deputy deputy
Child Child

Figure 4.3: The fork() system all

In the initial state (A), we have a split proess. When the body invokes the migrate system all,

the deputy starts a proess on the target PE, whih will be the new body, and holds a ommuniation

hannel to it (B). The �rst ommuniation to the target PE is done using a migration daemon on

it, whih waits for migration attempts, and reates the proesses for the new bodies.

The new body uses its indiret hannel via the deputy, to inform the body of the address

of a ommuniation port it opens for the atual migration. The body onnets to this address,

establishing a third ommuniation link (C). Using this new ommuniation link, the body sends

its state (i.e. memory maps, memory ontents, mmaped �les information, program state, et.) to

the new body, whih beomes an exat dupliate of the body. The original body then loses the

onnetion down, and terminates, leaving the new body in the target PE (D).

24

New
Body

body

body
New

Deputy

Body

B

Deputy

Body

Deputy

Deputy

Body

A

C D

Figure 4.4: Stages in proess migration

25

Chapter 5

Performane

This hapter presents performane results obtained from the implemented prototype. The tests

were exeuted on 2 Intel Professional/GX workstations, eah with an Intel 486DX/33 Proessor,

16MB main memory, and an SMC WD8013EPC Ethernet ontroller.

The �rst setion provides a omparison of remote vs. loal system all exeution time. Setion 2

presents a dissetion of the overhead in the exeution of remote system alls.

5.1 Remote System Calls

System alls are the main interfae between the deputy and the body. The frequent use of system

alls in proesses make them the key fator in the remote exeution overhead. This setion shows

the overhead of exeuting a remote system all.

5.1.1 Measurement Tehnique

Remote system alls overhead was measured by running a set of benhmarking programs. Eah

benhmark measures the exeution time of one system all. A system all is exeuted 100,000 times

on the loal PE, and 10,000 times on the remote PE. The repetition is required to disseminate the

proess initialization overhead, and to avoid utuations due to the lok preision. Inreasing the

number of repetitions has no signi�ant e�et on the results.

This measurement method is good for idempotent system alls, whose exeution time does not

depend on the number of previously exeuted system alls. It fails, however, for system alls that

modify the state of the proess, or the objet they operate upon. For example, the write() system

26

all enlarges a �le eah time it is exeuted. To measure suh system all exeution times, the

benhmark nulli�es the side e�ets of the measured system all using an idempotent system all,

the exeution time of whih is known. The exeution time of the nullifying system all is then

subtrated from that of the ombined alls to get the exeution time of the measured system all.

5.1.2 Results

Performane measurements were performed for the following system alls:

� lose()

� lseek()

� open()

� write()

The measurements results are summarized in Table 5.1.

Sysall Loal (ms) Remote (ms) Slowdown

lose :024 3:27 136:3

lseek :025 3:28 131:2

open :610 7:43 12:2

write 1K :340 9:84 28:9

write 8K 1:450 24:65 17:0

Table 5.1: Exeution times of remote vs. loal system alls

As expeted, remote exeution of short system alls has a very large slowdown ratio. Heavier

system alls, whih require data transfer, has a larger absolute overhead, but the slowdown ratio

is muh lower.

5.1.3 A Closer Look on write()

This setion provides a loser look on the write() system all. In partiular we show the e�ets

of the size of the written blok on the performane of the remote write. Figure 5.1 displays the

remote and loal exeution times for the write() system all, with varying blok sizes.

27

0

5

10

15

20

25

0 1024 2048 3072 4096 5120 6144 7168 8192

m
-
s
e
c

Data size

local
remote

Figure 5.1: Write() system all exeution times

As the graph shows, the exeution times of both the loal and the remote versions of the write()

system all are proportional with the size of the written blok. As the paket size inreases, the

slowdown ratio is dereased, as shown in Figure 5.2.

5.2 Overhead Dissetion

The previous setion presented the overhead inurred in remote exeution vs. loal exeution of

various system alls. In order to hoose the right approah towards improving these ratio, one has

to know the weight of the various omponents of the overhead.

This setion presents a dissetion of the overhead into its various omponents.

5.2.1 Fatoring the Overhead

As the proess uses the ommuniation hannel only to forward requests and replies to/from the

deputy, the only soure for overhead is the ommuniation. The total overhead of a given system

all is, therefore, the sum of the message latenies of the ommuniation messages sent between

the body and the deputy, where message lateny is de�ned as the time sine one side of the

28

10

15

20

25

30

35

40

0 1024 2048 3072 4096 5120 6144 7168 8192

S
l
o
w
d
o
w
n

r
a
t
i
o

Data size

Figure 5.2: Write() system all exeution slowdown

ommuniation deides to send a message to the other, until the message is aepted by the other

side.

The message lateny has the following omponents:

� Network Lateny This is the time sine a paket is delivered to the interfae at the sending

mahine, until the paket is olleted from the network by the reeiving mahine's network

interfae, and is passed to the system to be handled.

� IP Overhead This is the overhead inurred by IP's handling of the paket, at both the

sending and the reeiving mahines.

� TCP overhead The overhead indued by the TCP protool management.

� Data Pakaging The time it takes for the sending mahine to pakage the data, and for the

reeiving mahine to unpakage it.

� Context Swith The reeiving proess is usually not ative. This part inludes the time it

takes to re-ativate it.

29

The following setions desribe these omponents, the methods used to measure eah of them,

and the measurements results.

Network Lateny

The network lateny is the time it takes for the network to transfer a message from one node to

another. More preisely, this is the time sine a paket is handed to the interfae layer in the

sending node, until the interfae layer at the reeiving node deliver the paket to the upper layers.

Measuring the network lateny was done by writing a `ping-pong' protool. This protool simply

mirrors the �rst 10,000 pakets it reeives from the network interfae, at whih time the pakets

are dropped. By sending one paket to this protool on the remote node, and monitoring the time

it takes for the protool to start dropping pakets we were able to measure the round-trip time.

As the protool does nothing but forwarding the paket, the network lateny is half the round-trip

time. Measured latenies for various paket sizes on an Ethernet network are shown in Figure 5.3.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

64 128 192 256 320 384 448 512

m
-
s
e
c

Packet Size

Figure 5.3: Ethernet network lateny (ms)

The measured network lateny is roughly (328 + 2:59n)�s for an n bytes paket. The network

interfae is optimized for small pakets, and is able to redue this �gure by 41�s for pakets of size

30

between 89 and 104 bytes, and 83�s for smaller pakets.

IP Overhead

IP overhead was measured using the same method used for measuring the network lateny, namely,

a speial purpose `ping-pong' protool. This method gives the round-trip time for an IP datagram.

By subtrating the network lateny from these results we were able to alulate the IP overhead.

This overhead is 184�s, regardless of the paket size. Datagrams larger then an Ethernet paket

were not measured, as TCP does not use the IP fragmentation.

Context Swith

To measure the ontext swith time the following benhmark was exeuted. A bidiretional om-

muniation hannel was opened. One data byte was repeatedly sent from one endpoint to the other

and bak again. This benhmark was exeuted twie, the �rst time with one proess doing all

the operations, and in the seond two proesses were used, one at eah ommuniation endpoint.

The only di�erene between the exeution times of these two runs is due to the ontext swithes

required in the seond run. The total exeution time di�erene was divided by the number of

ontext swithes exeuted, and the result is an average of 165�s for a ontext swith.

The message lateny inludes one ontext swith at the reeiving side. A ontext swith at

the sending side will our after the paket has been transmitted, and will therefore, overlap other

events.

TCP Overhead

TCP was also measured using the same `ping-pong' method, only the ommuniating entities were

two user-level proesses. By subtrating the IP overhead, network lateny, ontext swith time,

and system all overhead from the resulting round-trip time we found that the modi�ed TCP (with

no heksum) overhead is independent of the volume of transmitted data. This overhead amounts

to 825�s.

Data Pakaging

To measure the data pakaging overhead, some of the benhmarks were exeuted on a speial

kernel that uses the pakaging of the intraproess ommuniation, but instead of forwarding the

31

pakets to/from a deputy, alls the unpakaging funtions in the alling proess. The resulting

measurements gives an overhead of about (75 + :03n)�s for pakaging n bytes.

5.2.2 Validating the Measurements

Validation of the above measurements was done by alulating the expeted overhead for various

system alls, and omparing the result with the measured overhead. Tables 5.2 and 5.3 present

the alulation of the expeted overhead for the system all lose() and for the write() system all

writing 1KB of data, respetively.

Fator Request Reply Total

Network 411 421 832

IP 184 184 368

C-Swith 155 155 310

TCP 825 825 1; 650

Pakaging 77 77 154

Total 1; 652 1; 662 3; 314

Table 5.2: Expeted lose() system all overhead (�s)

The overhead in the lose() is due to two messages: the request, and the reply. The request is

64 bytes long, and the reply is 68 bytes long (inluding the 40 bytes headers of TCP and IP). The

total expeted overhead is 3:314ms and the measured overhead, as an be extrated from Table 5.1,

is 3:256ms.

System Call opyin()

Fator Request Reply Request Reply Total

Network 431 421 390 3; 125 4; 367

IP 184 184 184 184 736

C-swith 155 155 155 155 620

TCP 825 825 825 825 3; 300

Pakaging 77 77 77 182 413

Total 1; 672 1; 662 1; 631 4; 471 9; 436

Table 5.3: Expeted overhead of write() of 1KB (�s)

32

The write() system all has a request size of 72 bytes, and the reply is 68 bytes long. During

its exeution write() alls opyin() to opy data from the body. The opyin() request is 56 bytes

long. The reply, whih ontains the data, is 1,080 bytes long. The expeted overhead of a remote

invoation of a write() system all is 9:436ms, while the measured overhead is 9:5ms.

5.3 Communiation Improvements

As an be seen in Figure 5.4, the network lateny, and the TCP protool overhead onstitutes the

major parts of the overhead for the measured ases. This setion disusses the possible gains from

improving those layers.

Close()

Write()

0 1 2 3 4 5 6 7 8 9 10

Time (ms)

Network IP TCP PackagingC-Switch

Figure 5.4: Communiation overhead omponents

5.3.1 FDDI

The �rst onsidered improvement is replaing the Ethernet network used by the prototype to

an FDDI network. FDDI is a token ring network with a bandwidth of 100Mbps, operating on

�ber-optis tehnology. As the Ethernet's bandwidth is only 10Mbps, and sine other features

of the FDDI are designed to provide better performane, it is possible to assume that the FDDI

performane is tenfold that of the Ethernet.

Given this assumption, the e�et of replaing the Ethernet network by an FDDI will be reduing

the network lateny by 90%. This will redue the overhead for a remote invoation of the lose()

system all to 2:565ms, or an improvement of 23%. The expeted slowdown ratio is then 108.

These results will be very similar for other light system alls, suh as lseek() or soket().

For system alls that require bulk data transfer, suh as write(), the improvement will be

33

onsiderably better. For example, for the ase of writing 1KB, the network lateny will be redued

from 4:367ms to 437ms, whih means the total overhead is redued to 5:506ms, or an improvement

of 43%.

5.3.2 Replaing TCP/IP

For short pakets a major part of the overhead is aused by the TCP and IP protools. The TCP

protool is designed to give aeptable performane for all types of networks. IP is designed to

work in a dynami, large internetworking environment. The generality of both protools results in

both large headers, and a large amount of omputation.

We believe that a speial-purpose, reliable protool for a distributed environment an have a

signi�ant performane improvement over TCP/IP. If suh a protool an be implemented to be

10 times faster than TCP/IP, its use will onsiderably redue the overhead inurred by a remote

exeution of a system all. The total overhead for the remote exeution of the lose() system all

will be redued to 1:498ms, or an improvement of 55%. For the write() system all the improvement

will be 38%, and the overhead will be 5:804ms.

34

Chapter 6

Conlusions

This work presented the deputy mehanism for ahieving transparent proess migration. The major

idea in the mehanism is splitting the proess into two parts, the �rst of whih does the atual

omputation, and the seond is responsible for keeping the proess environment. These two parts

ommuniate aross a ommuniation hannel.

We have implemented a prototype of a deputy-based distributed operating system. The proto-

type supports dynami load balaning based on the migration mehanism presented in this work.

The implementation of the prototype required adding 7,200 lines of ode to the original kernel

soures, whih are 190,000 lines long. 30 soure �les out of the original 560 were modi�ed to insert

hooks for the deputy, and body, and to break several routines. Of the aforementioned 7,200 lines,

only 5% are mahine dependent. These are those dealing with restoring the state of a migrating

body, and with setting the oating point unit for the load balaning omputations.

Further study is still required in the ommuniation domain. The intraproess ommuniation

protool an be onsiderably improved, the hoie of TCP as the transport protool should be

reonsidered, and the suitable hardware layer should be seleted. A seond area of researh is

singling out the frequently used resoures, and making them globally available.

One possible family of suh system alls is those dealing with interproess ommuniation. In

the urrent prototype, data transferred between two proesses might have to travel twie over the

network. First from the sending body to its deputy, and then from the reeiving proess's deputy

to its body. One of these hops an be avoided by migrating sokets (ommuniation endpoints)

with one of the proesses that uses them. Implementing migrateable sokets will require a new

transport layer protool that an support reliable many-to-many ommuniation.

35

Bibliography

[Ba86℄ M. J. Bah, The Design of the UNIX Operating System, Prentie-Hall, Englewood

Cli�s, NJ (1986).

[BLL92℄ A. Briker, M. Litzkow, and M. Livny, \Condor Tehnial Summary," Tehnial

Report TR1069, University of Wisonsin - Madison, (January 1992).

[BGW93℄ A. Barak, S. Guday, and R. Wheeler, The MOSIX Distributed Operating System,

Load Balaning for UNIX, Leture Notes in Computer Siene, Vol. 672, Springer-

Verlag, NY, (1993)

[Cer78℄ V. Cerf, \The Catenet Model for Internetworking," Tehnial Report IEN 48, SRI

Network Information Center, Menlo Park, CA (July 1978).

[Com91℄ D. E. Comer, Internetworking With TCP/IP Vol. I: Priniples, Protools, and

Arhiteture, 2nd ed., Prentie-Hall, Englewood Cli�s, NJ (1991).

[Dou89℄ F. Douglis, \Experiene with Proess Migration in Sprite," Proeedings of the

USENIX Distributed & Multiproessor Systems Workshop, (otober 1989)

[LiS92℄ M. Litzkow, M. Solomon, \Supporting Chekpointing and Proess Migration out-

side the UNIX Kernel," Proeedings of the Winter USENIX onferene, pp. 283{

290, (January 1992).

[LMKQ89℄ S. J. Le�er, M. K. MKusik, M. J. Karels, and J. S. Quarterman, The Design and

Implementation of the 4.3BSD UNIX Operating System, Addison-Wesley, Reading,

MA (1989)

[MKD92℄ P. E. MKenney and K. F. Dove, \EÆient Demultiplexing of Inoming TCP

Pakets," Computing Systems, 5(2) pp. 141{158, (Spring 1992).

36

[Nag84℄ J. Nagle, \Congestion Control in IP/TCP," RFC 896, SRI Network Information

Center, Menlo Park, CA (January 1984).

[MRT90℄ S. J. Mullender, G. van Rossum, A. S. Tanenbaum, R. van Renesse, and H. van

Staveren, \Amoeba A distributed Operating System for the 1990s," IEEE Com-

puter, 23(5), (May 1990).

[PaH90℄ C. Partridge and R. Hinden, \Version 2 of the Reliable Data Protool (RDP),"

RFC 1151, SRI Network Information Center, Menlo Park, CA (April 1990).

[OCD88℄ J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B. Welh,

\The Sprite Network Operating System," IEEE Computer, 21(2), (February 1988).

[Pos80℄ J. Postel, \User Datagram Protool," RFC 768, SRI Network Information Center,

Menlo Park, CA (August 1980).

[Pos81a℄ J. Postel, \Internet Protool," RFC 791, SRI Network Information Center, Menlo

Park, CA (September 1981).

[Pos81b℄ J. Postel, \Transmission Control Protool," RFC 793, SRI Network Information

Center, Menlo Park, CA (September 1981).

[Sun87℄ Sun Mirosystems, \XDR: External Data Representation Standard," RFC 1014,

SRI Network Information Center, Menlo Park, CA (June 1987).

[Sun88℄ Sun Mirosystems, \RPC: Remote Proedure Call Protool Spei�ation Ver-

sion 2," RFC 1057, SRI Network Information Center, Menlo Park, CA (June 1988).

[VHS84℄ D. Velten, R. Hinden, and J. Sax, \Reliable Data Protool," RFC 908, SRI Network

Information Center, Menlo Park, CA (July 1984).

37

