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Chapter 1

Introdu
tion

The most important goal of distributed operating systems is the ability to transparently share the

resour
es of several ma
hines. In order to a
hieve this goal the system must provide a me
hanism

for using the various pro
essors of the system. Pro
ess migration is one of the 
ommon me
hanisms

for CPU sharing.

The Pro
ess Migration me
hanism enables the system to move a pro
ess from one Pro
essing

Environment (PE), and 
ontinue its exe
ution in another. However, pro
ess Migration alone does

not provide transparen
y: a pro
ess must intera
t with its environment, and for transparent sharing

of the system resour
es, pro
ess migration must be ba
ked by other me
hanisms.

This work presents the deputy me
hanism for supporting transparent CPU sharing through

pro
ess migration. This me
hanism is based on the observation that the main body of the pro
ess

is site independent, and 
an be transparently exe
uted in any PE, while only a small part of it is

site dependent, and must be exe
uted in a spe
i�
 PE. To a
hieve transparent pro
ess migration

the pro
ess is divided into two parts: the deputy, whi
h 
ontains the site dependent parts of the

pro
ess, and the body, whi
h 
ontains the rest. These two parts maintain a 
ommuni
ation 
hannel

between them. The body 
an be migrated, and exe
utes normally on any PE, until it attempts to

exe
ute a site dependent operation. Su
h an attempt is inter
epted by the kernel at the PE the

body is exe
uting on, and forwarded to the deputy. The deputy then exe
utes the operation on

behalf of the body, and returns it the result.
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Related Work

Several systems support transparent pro
ess migration. Me
hanisms used to a
hieve transparen
y

vary between the various systems.

The Condor pa
kage [BLL92,Lis92℄ is a pa
kage that supports both 
he
kpointing of pro
esses

and pro
ess migration. The most notable feature of Condor is the fa
t that it is implemented

outside the system's kernel. As su
h Condor is highly portable, but it su�ers both in performan
e

and in transparen
y. The major limitations are for multiprogramming; no 
reation of new pro
esses

is allowed and interpro
ess 
ommuni
ation is not supported. Whatever transparen
y supported is

a
hieved by an assigning for ea
h pro
ess a shadow pro
ess. The shadow is responsible for exe
uting

the pro
ess's system 
alls. The shadow di�ers from the deputy by being used only for the exe
ution

of system 
alls, while the deputy also a
ts as an alternate of the pro
ess, and forwards asyn
hronous

events to the body.

Sprite [OCD88,Dou89℄ is a distributed operating system developed in the UC Berkeley. Sprite

supports a distributed �le system, thus making all �les a

essible at ea
h PE. As 
ommuni
ation

me
hanisms are implemented on top of the �le system, interpro
ess 
ommuni
ation is also globally

available. The existen
e of this �le system makes transparent pro
ess migration mu
h simpler.

Only a small number of system 
alls are site dependent, and these are forwarded to the home node

of the pro
ess to be exe
uted there. Sprite, unlike Condor, does not have a shadow for ea
h pro
ess.

Instead a single server at ea
h PE serves all site dependent system 
alls.

The MOSIX operating system [BGW93℄ is a distributed operating system that supports trans-

parent pro
ess migration and dynami
 load balan
ing. The MOSIX kernel is divided into three

parts: the lower kernel, whi
h is site-dependent, the upper-kernel whi
h provides the environment

for user pro
esses and is site-independent, and the linker whi
h is used for the 
ommuni
ation be-

tween the other two parts. This stru
ture makes all system entities globally available to ea
h PE.

When a pro
ess attempts a

essing a resour
e the upper-kernel at the PE that hosts the pro
ess

forward the request via the linker to the lower kernel at the site the resour
e is in. As all resour
es

are globally available, all system 
alls are site-independent, and pro
ess migration is transparent.

Amoeba [MRT90℄ a
hieves lo
ation transparen
y by requiring that all intera
tion between the

pro
ess and its environment is done through a remote pro
edure 
all (RPC) me
hanism, whi
h

provides the Amoeba equivalent for a system-
all. The kernel at ea
h PE is responsible for lo
ating

the a

essed obje
t, and for forwarding the RPC to it. As su
h, all resour
es are globally available
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to pro
esses, and RPCs are site-independent.

Organization of this Thesis

The se
ond 
hapter presents the deputy 
on
ept. The third 
hapter dis
usses the 
ommuni
ation

proto
ol used between the deputy and the pro
ess body. The implementation of a prototype of a

deputy-based system is des
ribed in Chapter 4. Chapter 5 presents some performan
e results.
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Chapter 2

The Deputy Con
ept

This 
hapter presents the main 
on
ept developed in this thesis|the deputy. The deputy is that

part of a pro
ess that 
annot be migrated, and must reside in the home of the pro
ess, i.e. the

PE in whi
h the pro
ess was 
reated. This splitting of a pro
ess is used for a
hieving transparent

pro
ess migration.

The �rst se
tion dis
usses the UNIX 
on
ept of a pro
ess. Transparent pro
ess migration is

dis
ussed in the next se
tion, and the idea of splitting the pro
ess to a
hieve transparent pro
ess

migration is presented in the last se
tion.

2.1 The UNIX Pro
ess

A pro
ess is the exe
ution of a program. In the UNIX operating system [Ba
86,LMKQ89℄ the

pro
ess is the basi
 
omputational unit. The system 
reates the illusion of 
on
urrent exe
ution of

several pro
esses by s
heduling the CPU and memory between the pro
esses.

A UNIX pro
ess has two 
ontexts, the user 
ontext and the system 
ontext. The user 
ontext of

the pro
ess 
ontains the program 
ode, sta
k and variables. The system 
ontext 
ontains des
ription

of the resour
es the pro
ess is atta
hed to, and a sta
k for the exe
ution of system 
ode on behalf

of the pro
ess.

The pro
ess intera
ts with its environment using two me
hanisms|system 
alls, and signals.

The following subse
tions des
ribe these me
hanisms.
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2.1.1 system 
alls

System 
alls are the me
hanism whi
h enables a UNIX pro
ess to operate on a resour
e. This

me
hanism relieves the programmer from the need to program a �le system or a devi
e driver. In

this sense a system 
all is similar to a library fun
tion. In addition, by preventing dire
t a

ess to

resour
es, the system 
an preserve the integrity of su
h resour
es.

Exe
uting of a system 
all 
onsists of the following stages:

� System 
all arguments are stored in the runtime sta
k. These arguments in
lude the user

supplied arguments, and a number identifying the system 
all.

� The pro
ess transfer 
ontrol to the system. After this stage the pro
ess is said to be exe
uting

in system mode.

� The system 
opies the arguments from the user sta
k. Arguments are 
opied to prevent their

modi�
ation during the system 
all exe
ution.

� The fun
tion that exe
utes the system 
all is invoked. The address of the fun
tion is taken

from a dispat
h table using the system 
all identi�er as an index.

� When the fun
tion returns the system arranges for the re
eipt of its result by the user's 
ode.

� Finally, the system returns 
ontrol to the program, and the pro
ess returns to user mode.

During the exe
ution of a system 
all, the system might have to transfer data from the user


ontext to the system 
ontext. For example, when the pro
ess reads from a �le the arguments it

gives to the system in
lude and identi�er of the �le to be read, a pointer to a bu�er in the user's

address spa
e, and the size of this bu�er. The system then reads the data from the �le and has to


opy it to the user-supplied bu�er. As transferring the data between address spa
es is a ma
hine

dependent operation, all su
h data transfer is done through an interfa
e provided by a small number

of fun
tions, e.g. 
opyin() and 
opyout().

2.1.2 Signals

In order to inform the pro
ess of the o

urren
e of ex
eptional or asyn
hronous events, the system

employs the signals me
hanism. Whenever su
h an event o

urs the appropriate signal is sent to

the pro
ess. Ex
eptional events informed in
lude a

ess to an illegal address, attempt to exe
ute
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an illegal instru
tion, and similar events. Asyn
hronous events are events like the arrival of data

on a 
ommuni
ation port, or the user's hitting the `
trl-C' key to terminate the pro
ess.

Signals are modeled after hardware interrupts. Just as hardware interrupt has an interrupt

handler asso
iated with it, so does ea
h signal have an a
tion to be taken when the signal is

delivered. The a
tion asso
iated with a signal ranges from simply ignoring the signal, to exe
uting

a spe
ial fun
tion in the user's program, to the termination of a pro
ess. In addition the pro
ess

may ele
t to blo
k arriving signals and to delay the exe
ution of the a
tion asso
iated with them.

Sending the signal to the pro
ess 
onsists of two stages. The �rst stage is posting the signal.

This stage is exe
uted in the 
ontext of whatever pro
ess the system was exe
uting when the event

o

urred. First the system 
he
ks what the a
tion asso
iated with the signal is. If it is to ignore the

signal, the signal is simply dis
arded, and nothing has to be done. If the pro
ess does not ignore

the signal, the system noti�es it of the signal's o

urren
e. Finally the system wakes the pro
ess

up if it is sleeping and needs to be wakened.

The se
ond stage is the signal delivery. In this stage the a
tion asso
iated with the signal is

taken. Just before the system returns the pro
ess to user mode, either after serving a system 
all,

or after handling a hardware interrupt, the system 
he
ks if any signals the pro
ess does not blo
k

were posted to it. If it �nds su
h a signal it arranges for the a
tion to be taken.

2.2 Pro
ess Migration

A distributed system is able to share the CPU resour
es of the system by using a fa
ility known

as pro
ess migration. To a
hieve this sharing, the system takes a pro
ess from one Pro
essing

Environment (PE), and 
ontinues its exe
ution on another.

One of the major features required in pro
ess migration is transparen
y. The fun
tional aspe
ts

of the system's behavior should not be altered as a result of migrating a pro
ess. A
hieving

transparen
y requires solving two problems, namely: the rendezvous problem, and the lo
ation

transparen
y . These problems are des
ribed in the next subse
tions.

2.2.1 The Rendezvous Problem

The rendezvous problem 
onsists of lo
ating a migrating entity. Suppose, for example, that a

pro
ess 
reates a 
hild pro
ess, and asks the system to inform it of the termination of the 
hild.

By the time the 
hild pro
ess terminates both pro
esses might have migrated several times. The
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system at the PE on whi
h the 
hild pro
ess terminates must be able to lo
ate the original pro
ess

to inform it.

One solution to this problem is assigning to ea
h pro
ess a home PE. Whenever the pro
ess

migrates it informs its home PE about its new lo
ation. When any entity on any PE wants to

a

ess the pro
ess it 
onta
ts the home, gets the lo
ation of the pro
ess, and 
an now a

ess the

pro
ess. To redu
e the overhead in
urred in 
onta
ting the home, the lo
ation of a pro
ess 
an

be 
a
hed in the a

essing PE, and the home has to be 
onsulted only if the 
a
he is empty or is

invalid.

The de
ision on whi
h PE is the home of a pro
ess di�ers between systems. In the MOSIX

operating system the PE on whi
h the pro
ess is 
reated is the home of the new pro
ess. On Sprite

the home of the new pro
ess is inherited from the 
reator. Both systems en
ode the home PE

number in the pro
ess ID. When a

ess to the pro
ess is required, its home identity 
an then be

extra
ted from its ID.

2.2.2 Lo
ation Transparen
y

Lo
ation transparen
y 
onsists of hiding the fa
t that the pro
ess has migrated from the pro
ess

itself. As long as the pro
ess does not intera
t with its environment it 
an not be
ome aware of the

migration. When the pro
ess intera
ts with its environment (via a system 
all) the system must

ensure that the result of the intera
tion does not depend on the site the pro
ess 
urrently exe
utes

in.

Lo
ation transparen
y 
an be a
hieved by two methods. The �rst approa
h the system makes

all resour
es a

essible to ea
h PE. The system at the PE is responsible for 
onta
ting the site the

resour
e is physi
ally on. Employing this method 
reates an identi
al environment in ea
h PE, and

thus the result of system 
alls is independent of the site they are exe
uted in. MOSIX [BGW93℄ is

a good example for su
h a system. The linker in MOSIX hides the environment details from the

upper kernel. When the system 
all exe
utes in the upper kernel, it is not aware of the lo
ation

of resour
es. The linker transparently redire
ts a

esses to the resour
e to the 
orre
t site, thus

making all system 
alls site independent.

The se
ond approa
h for a
hieving lo
ation transparen
y is forwarding the system 
all to the

home PE of the pro
ess, where it will be exe
uted. For this approa
h to work, the home must be

inherited, otherwise a 
reated pro
ess environment might di�er from that of the 
reating pro
ess,
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and the migration will not be transparent. The Condor pa
kage [BLL92,LiS92℄ uses this method.

For ea
h pro
ess Condor 
reates a shadow pro
ess in the home ma
hine, whi
h is responsible for

exe
uting the system 
alls. Condor is implemented outside the system's kernel. As su
h, it 
annot

implement all system 
alls, and is not 
ompletely transparent.

Sprite [OCD88℄ uses a hybrid approa
h. Most system 
alls are site independent due to the

distributed �le system it provides. Those system 
all whi
h are site dependent are forwarded to

the home PE of the pro
ess to be exe
uted there by a spe
ial server that serves all environment

dependent system 
alls on the home PE.

2.3 Splitting the Pro
ess

The 
on
ept of the deputy of a pro
ess is based on the observation that only the system 
ontext of a

pro
ess is site dependent. Generally the idea is that the user 
ontext of a pro
ess is migrateable, and,

sin
e its interfa
e to the system 
ontext is well de�ned, it is possible to inter
ept every intera
tion

between the user and system 
ontexts, and forward this intera
tion a
ross the network.

In order to migrate a pro
ess we divide it to two parts: the body whi
h has all of the user


ontext and almost none of the system 
ontext of the pro
ess, and the deputy whi
h has the rest

of the system 
ontext, and no user 
ontext (see Figure 2.1). The user 
ontext and the part of the

system 
ontext that is asso
iated with the body are site independent. The body 
an, therefore, be

migrated to any PE in the system. The deputy has the site dependent part of the system 
ontext

of the pro
ess, hen
e it must remain on the home PE of the pro
ess. The two parts are 
onne
ted

by a 
ommuni
ation 
hannel, on whi
h intera
tion between the two parts takes pla
e. Figure 2.1

shows an unsplit pro
ess (pro
ess A), and a split one (pro
ess B).

Procwss A

Process B

(Deputy)

Process B

(Body)

Figure 2.1: Unsplit, and split pro
esses
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Lo
ation transparen
y is a
hieved by forwarding site dependent system 
all to the home PE.

System 
alls exe
uted by the body are inter
epted by the remote PE's kernel. If the system 
all

is site independent it is exe
uted in the remote PE, otherwise, the system 
all is forwarded to the

deputy. The deputy exe
utes the system 
all on the home PE, and sends the result ba
k to the

body, whi
h then 
ontinues exe
uting the user's 
ode.

The deputy me
hanism is a variant of the home PE solution to the rendezvous problem. Instead

of providing the lo
ation of the pro
ess, the deputy provide a 
hannel to intera
t with the body.

The kernel at the home PE inform the deputy of asyn
hronous events, the deputy 
he
ks if there is

any a
tion to be taken, and inform the body if so. The body 
he
ks the 
ommuni
ation 
hannel for

reports of asyn
hronous events in the same lo
ations a standard UNIX pro
ess 
he
ks for signals.

We �nd the deputy 
on
ept a very appealing method of a
hieving transparen
y. The reasons

for this are that it provides a simple and 
lean solution to the transparen
y problem. This solution

is robust, and will not be a�e
ted even by major modi�
ations to the system. Some modi�
ations,

su
h as supporting a distributed �le system, might even improve the solution by making many

system 
alls site independent. Finally, the solution seems to be portable. It relies on almost

no ma
hine dependent features of the system, and thus will not hinder system porting to di�erent

ar
hite
tures. In fa
t, it is not relying mu
h on UNIX spe
i�
 properties, and seem to be exportable

to other time sharing operating systems.

This solution has, however, some overhead on the exe
ution of system 
alls. For example, as

Figure 2.2 shows, data sent from one pro
ess to another has a two hops over the network, instead of

just one hop. Additional overhead is in
urred due to the need to hold enough state at the home PE,

and to keep a dedi
ated 
ommuni
ation 
hannel. Furthermore, as the number of pro
esses in
reases,

the home PE might be
ome the bottlene
k of the system, thus putting a limit to s
aleability.

We believe that all of the problems raised above 
an be solved by additional me
hanisms.

These me
hanisms will make some of the resour
es globally available, thus redu
ing the number

of site dependent system 
alls and improving the overall performan
e. Given the 
urrent memory

pri
es, the memory requirements overhead due to the need to keep the 
ommuni
ation links, and the

deputies 
an be negle
ted. Idle deputies do not require mu
h CPU resour
es, and with redu
ing the

number of site dependent system 
alls, the deputies will be idle most of the time. The 
omputational

overhead in handling many 
ommuni
ation 
hannels 
an be solved by methods similar to those

des
ribed in [MKD92℄.
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Body A Body B

Deputy A Deputy B

Home PE

Figure 2.2: The path of data sent from pro
ess A to pro
ess B
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Chapter 3

Communi
ation

One of the major 
on
erns in a distributed system is the proto
ol used by 
ommuni
ating entities.

This 
hapter presents some of the standard 
ommuni
ation proto
ols we had a

ess to, and our


hoi
e of proto
ol for the intrapro
ess 
ommuni
ation.

The system we worked on supports several 
ommuni
ation proto
ol whi
h belong to di�erent

families. These proto
ols in
lude the User Datagram Proto
ol (UDP), Transmission Control Proto-


ol (TCP), and Internet Proto
ol (IP) of the Internet Proto
ol suite; the Sequen
ed Pa
ket Proto
ol

(SPP), and Internetwork Datagram Proto
ol (IDP) of the Xerox Network System ar
hite
ture; and

the Transmission Proto
ol levels 0 and 4 (TP-0, and TP-4), Conne
tionless Transmission Proto
ol

(CLTP), and Conne
tionless Network Proto
ol (CLNP) of the ISO's Open Systems Inter
onne
t

(OSI) 
ommuni
ation standard.

As the OSI proto
ols implementation is still evolving, and the Xerox NS proto
ols de�nition is

presently unavailable, the 
hoi
e of 
ommuni
ation proto
ol for implementing the link between the

deputy and the pro
ess naturally fell on the Internet Proto
ol suite.

Se
tion 1 presents the Internet Proto
ol suite, and Se
tion 2 des
ribes our 
hoi
e of proto
ols

for the intrapro
ess 
ommuni
ation.

3.1 The Internet Proto
ol Suite

The Internet Proto
ol suite is a set of 
ommuni
ation proto
ols initially developed by the Defense

Advan
ed Resear
h Proje
ts Agen
y (DARPA). Like most networking proto
ol suites, the Internet

Proto
ol suite is a layered set of proto
ols. Generally, there are 4 layers of proto
ols:

11



� appli
ation proto
ols su
h as File Transfer or Remote Login

� transport proto
ols su
h as TCP and UDP

� the Internet Proto
ol

� network interfa
e proto
ols for hardware networks su
h as Ethernet or FDDI.

These layers roughly 
orrespond to the appli
ation, transport, network, and data link layers of

the OSI referen
e model, respe
tively.

Appli
ation layer proto
ols are too spe
ialized to be used as the basis for the intrapro
ess


ommuni
ation. This 
ommuni
ation requires some fa
ilities that are not supported by IP, e.g.

data demultiplexing, and reliability. As su
h, IP (and the network interfa
e proto
ols) 
an not be

used for our purposes. The 
hoi
e is, therefore, limited to the standard transport proto
ols, TCP

and UDP, whi
h are des
ribed below. The following proto
ols are also des
ribed: Reliable Data

Proto
ol (RDP), Remote Pro
edure Call (RPC), and IP itself.

3.1.1 IP

The Internet Proto
ol [Pos81a℄ is one of the major proto
ols in the Internet Proto
ol suite. It


orresponds to the network layer in the OSI referen
e model.

The transport proto
ols pass to IP datagrams, and IP is responsible for transferring the data-

grams to the destination host. At the destination host the datagrams are passed to the transport

proto
ol they belong to.

IP is based on the \
atenet model" [Cer78℄. A 
atenet is a 
olle
tion of independent networks

inter
onne
ted by gateways. Figure 3.1 shows an example of a 
atenet 
omprised of two networks

inter
onne
ted by a gateway.

IP hides the network stru
ture from the upper layer proto
ols. It provides the following 
om-

muni
ation servi
es:

� Fragmentation and reassembly. Underlying network hardware may be in
apable of transfer-

ring large datagrams. IP fragments datagrams that are too large for the network hardware,

sends all fragments as separate datagrams to the destination host, and reassembles the frag-

ments at the destination host.
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Network A

Network B

Gateway

Figure 3.1: A 
atenet 
omprised of two networks

� Routing. The destination host is not ne
essarily on the lo
al physi
al network. IP is respon-

sible for routing the datagram through the gateways to the destination host.

� Status 
ommuni
ation. IP reports the upper layers proto
ol of the status of outgoing data-

grams. Events reported in
lude the destination being unrea
hable, datagram time-out, et
.

IP employs a best e�ort delivery s
heme. This means the IP layer attempts delivering the

datagram to the destination host, but it does not guarantee that the datagram is, eventually,

delivered, or even that a delivery failure is reported to the user.

IP datagrams may be lost, dupli
ated, arrive out of sequen
e, arrive with errors, or any 
ombi-

nation of the above. It only guarantee that a delivered datagram is delivered to the right destination

host, and is transferred to the transport proto
ol it belongs to. IP does not support other network-

ing issues su
h as 
ow 
ontrol, and 
ongestion 
ontrol. The support of these servi
es is left for the

upper layer proto
ols.
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3.1.2 UDP

The User Datagram Proto
ol [Pos80℄ is a simple, unreliable, 
onne
tionless, transport proto
ol.

UDP enhan
es the servi
es provided by IP by multiplexing and demultiplexing datagrams in the

sour
e and destination hosts, respe
tively, and optionally adds some reliability by dete
ting errors

in delivered datagrams.

UDP de�nes, in ea
h host, a set of ports. Ports are abstra
t destination points identi�ed by a

positive integer. Datagrams arriving at a host are demultiplexed a

ording to the destination port

number. Ea
h UDP datagram in
ludes the sour
e port number, whi
h spe
i�es the port number

to whi
h replies should be sent.

Most implementation of UDP support the notion of a UDP 
onne
tion. A UDP 
onne
tion is

de�ned by the host addresses, and the port numbers, of the 
ommuni
ating entities. The semanti
s

of a UDP 
onne
tion are that ea
h entity 
an send datagrams to the other entity only, and that

datagrams sent from other entities to either sides of the 
onne
tion are dis
arded. No handshaking,

or reliability me
hanisms are supported by the 
onne
tion.

Error dete
tion is done by adding a 16 bit 
he
ksum to ea
h outgoing datagram. This 
he
ksum

is 
he
ked in in
oming datagrams, and if an error is dete
ted the datagram is dis
arded. There

is no need to report the sour
e host of the dis
arded datagram be
ause datagram delivery is not

guaranteed by UDP.

3.1.3 TCP

The Transmission Control Proto
ol [Pos81b℄ is the main transport layer proto
ol provided by the

Internet Proto
ols suite. TCP provides for 
onne
tions of bidire
tional reliable transfer of streams

of data. It also handles 
ongestion and 
ow 
ontrol.

TCP, like UDP, de�nes a set of ports in ea
h host. A TCP 
onne
tion is de�ned by the host

addresses and the port numbers on both sides of the 
onne
tion. The 
onne
tion is handled as two

unidire
tional 
onne
tions, with ea
h side a
ting as both sender and re
eiver. Control data of a

re
eiver side may be, however, piggyba
ked on outgoing data pa
kets.

TCP is a sliding window proto
ol. The sender keeps a transmit window whi
h slides a
ross

the data stream, and may only send data from within the window. When the re
eiver re
eives

in-sequen
e data it a
knowledges the sender of the data re
eipt, the sender transmit window is

moved to after the a
knowledged data, and new data 
an be sent. The re
eiver keeps a re
eive
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window whi
h is identi
al to the transmit window of the sender. By disposing an in
oming data

that does not �t in the window or already exists in it, the re
eiver is able to over
ome dupli
ate

messages. An out of sequen
e data is inserted to the re
eive window, but is not a
knowledged until

all the pre
eding data is re
eived.

Data loss is handled by retransmission. When a data byte is sent a timer is started. If the timer

expires before the data is a
knowledged, the data is retransmitted, and the timer is started again.

To avoid 
ongestion due to retransmissions, TCP employs an exponential ba
ko� timer strategy.

The value of the retransmission timers grows exponentially with the number of retransmissions.

This prevents possible 
ongestion in the network by redu
ing the network traÆ
 volume.

The window size used by the sender is not 
onstant. The re
eiver noti�es the sender of the

available bu�er spa
e in the re
eiver, and the sender uses this value as a limit to the window size.

This method provides 
ow 
ontrol to TCP.

A TCP 
onne
tion is established using a three way handshake proto
ol. During 
onne
tion

establishment both parties ex
hange some information required for 
onne
tion management. This

information in
ludes the re
eive window size, the sequen
e number of the �rst data byte, and the

maximum size of ea
h TCP segment.

A segment is the term by whi
h TCP refers to the data sent in one IP datagram. Sin
e the

probability of a datagram loss grows with the number of transmitted fragments, TCP attempts

at passing IP datagrams that need no fragmentation. This is done by ea
h side informing the

other what is the maximum segment size his lo
al network 
an handle with no fragmentation. The

maximum segment size used by a 
onne
tion is the minimum of these two values.

Most TCP implementations implement the Nagle algorithm [Nag84℄ to 
oales
e short segments.

A sender employing this algorithm bu�ers outgoing data when it expe
ts some more data to be

sent. Generally if there is outstanding una
knowledged data, the sending TCP bu�ers data until

the outstanding data is a
knowledged, or it 
an send a full segment.

3.1.4 RDP

The Reliable Data Proto
ol [VHS84, PaH90℄ is an experimental internet proto
ol whi
h supports

reliable datagram-based 
onne
tions.

RDP is a sliding window proto
ol. As the basi
 data unit in RDP is a datagram, the window

size is de�ned by the number of datagrams the sender 
an transmit. Unlike TCP, RDP allows two
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types of a
knowledgment. A 
umulative a
knowledgment is used to a
knowledge all datagrams

up to a spe
i�ed one. A sele
tive a
knowledgment 
an be used by the re
eiver to a
knowledge

datagrams arriving out of sequen
e. (TCP does not support this a
knowledgment type.)

The advantages of RDP over TCP are its simpli
ity, the fa
t that it preserves message bound-

aries, and its ability to transfer datagrams at the order they arrived, and not the order they were

sent.

3.1.5 RPC

Unlike the aforementioned proto
ols, the Remote Pro
edure Call [Sun88℄ is not a transport layer

proto
ol. It 
orrespond to the session layer of the OSI referen
e model. The 
on
ept of a remote

pro
edure 
all is based on the 
lient-server model of 
ommuni
ation. In this model one of the


ommuni
ating entities|the server|provides servi
es for other entities|the 
lients. These servi
es

vary from server to server. They 
an be as simple as reporting the 
urrent time, or as 
ompli
ated

as providing a

ess to a global database.

The remote pro
edure 
all 
ommuni
ation model is a type of 
lient-server 
ommuni
ation model,

in whi
h the server exe
utes a pro
edure in behalf of the 
lient. RPC de�nes the format of the


lient request, and the server reply. It does not deal with the nature of the underlying transport

proto
ol. If the underlying proto
ol is not reliable RPC adds reliability by request retransmission.

Ea
h request is identi�ed by a unique request ID. This ID enables the server to dete
t dupli
ate

messages, and the 
lient to mat
h the reply with a request.

3.2 Intrapro
ess 
ommuni
ation

When 
hoosing the transport proto
ol to be used for the 
ommuni
ation between the deputy and

the body we had to 
onsider several requirements. For the exe
ution of system 
alls the proto
ol

must be reliable. As the proto
ol will usually be used for transfer of many small pa
kets, it should

also have short laten
y. Sin
e the network is a 
ommon resour
e, the proto
ol should have as small

network overhead as possible, and as the network might be used for transferring large amounts of

data the proto
ol must also be able to handle 
ongestion.

This se
tion presents the 
onsiderations used in sele
ting the proto
ols for the intrapro
ess


ommuni
ation, and modi�
ations applied to the transport proto
ol.
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3.2.1 The Intrapro
ess Transport Proto
ol

Of the three transport layer proto
ols des
ribed above the 
hoi
e, naturally falls on TCP. Raw

UDP does not satisfy the requirements be
ause it is inherently unreliable. Adding reliability in the

intrapro
ess proto
ol is most likely to be less eÆ
ient then existing proto
ols, and is very likely to

indu
e problems due to in
orre
t design or implementation.

RDP might have been suitable for the requirements had it supported any me
hanism for 
on-

gestion handling. The la
k of 
ongestion 
ontrol is made more 
riti
al by the fa
t that RDP relies

on IP to fragment and reassemble datagrams. If any of the fragments is lost the rest are kept in

the destination ma
hine until they are timed out, and the datagram is lost. A lost fragment will,

therefore, hold resour
es for the remaining fragments in the destination ma
hine, thus worsening

the 
ongestion.

When a datagram is lost RDP has to retransmit the 
omplete datagram again. The probability

of datagram loss is almost proportional to the number of fragments 
omposing the datagram.

1

Sending large datagrams is, therefore, more likely to 
ause datagram loss, and thus retransmission

of the 
omplete datagram. The probabilities of TCP segment loss are of 
ourse, not smaller, but

TCP has only to send the lost segment, and not the 
omplete datagram, thus redu
ing the volume

of data sent over the network, and avoiding 
ongestion even more.

3.2.2 The Intrapro
ess Proto
ol

The 
hoi
e of the intrapro
ess proto
ol is simpler. The only standard 
andidate is RPC, whi
h

does not suit our needs. RPC is using XDR for data representation. The translation between host

representation and XDR representation in
urs heavy overhead on ea
h transmitted pa
ket.

The remote pro
edure 
all model �ts the remote system 
all exe
ution semanti
s. It 
an also

a

ommodate the semanti
s of the deputy a

ess to the body's memory during a system 
all by

de
laring the body as a server for the duration of the system 
all. The relationship between the

deputy and the body 
annot, however, be des
ribed by the standard 
lient-server model, as either

might initiate request to the other. The remote pro
edure 
all model 
an, therefore, never des
ribe

this relationship, and RPC is not a suitable 
ommuni
ation proto
ol.

Sin
e the standard proto
ol does not satisfy the requirements, a dedi
ated proto
ol was de-

1

The exa
t probability is 1�(1�P )

n

, where P is the probability of a pa
ket loss, and n is the number of fragments.

For the typi
al values of P = 10

�3

, and n = 6 the probability is 0:00598503.
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veloped. This proto
ol is not a general proto
ol like RPC, but provides ad ho
 solutions for the

problem at hand. As the proto
ol is tightly 
onne
ted to the implementation it is des
ribed in

Chapter 4.

3.2.3 TCP Modi�
ations

The 
urrent transport proto
ol used for the intrapro
ess 
ommuni
ation is a modi�ed version of

TCP. Using some tuning and minor modi�
ations we were able to improve the system performan
e


onsiderably. The modi�
ations, and their rationale are des
ribed here.

First, and most important, we inhibited the Nagle algorithm. This is supported by the system,

but is not a default option. This option was disabled be
ause the intrapro
ess proto
ol sometimes

sends two 
onse
utive replies. With outgoing data 
oales
en
e the se
ond reply is delayed for an

average period of 100ms, whi
h is far too long for a system 
all.

Another 
hange of the defaults was in enabling the keep-alive option, and modifying its param-

eters to 
lose 
onne
tions that are idle for more than 30 se
onds. This option is not ne
essary for

the system's operation, but it enables faster garbage 
olle
tion in the presen
e of hosts or network


rashes.

The last modi�
ation is the removal of the TCP 
he
ksum. TCP provides error dete
tion

by adding a 
he
ksum to ea
h segment transmitted. This 
he
ksum is required in the standard

internet environment, as some of the networks 
omprising it may in
ur errors. All modern networks

provide error 
he
king, and guarantee that delivered pa
kets are delivered 
orre
tly. Hen
e, the

TCP 
he
ksum in su
h an environment is redundant. The 
omputation of this 
he
ksum, and its

validation amounts to a signi�
ant part of the pro
essing required by the proto
ol. Removing this


he
ksum redu
ed laten
y by 20%. We believe this gain justi�es the deviation from the standard.
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Chapter 4

Implementation

This 
hapter presents the implementation of the deputy me
hanism. The me
hanism is implemented

on top of the Berkeley Software Design, In
. BSD/386 system. BSD/386 is a system derived from

the 4.3BSD Network Release 2 operating system, developed in UC Berkeley.

The �rst two se
tions present the stru
tures of the pro
ess body and the deputy. The intera
tion

between the two is des
ribed in the third se
tion. Some spe
ial 
ases are presented in the fourth

se
tion.

4.1 The Body

Previous 
hapters stated that the body is the user 
ontext of a pro
ess. This is basi
ally true, but

as a pro
ess in UNIX must have a system 
ontext for basi
 system me
hanisms to operate on, the

body is implemented as a 
omplete UNIX pro
ess.

Ea
h body has a 
ommuni
ation 
hannel asso
iated with it. Data transmitted on this 
hannel

arrives to the deputy, and data transmitted from the deputy arrives to the body's 
hannel.

When the user 
ode of the pro
ess exe
utes a system 
all, the kernel 
he
ks if the pro
ess is a

lo
al pro
ess, or a body of a pro
ess from a remote PE. In the �rst 
ase the standard dispat
h table

is used to handle the system 
all. In the se
ond 
ase a se
ond dispat
h table is 
onsulted. Values at

this se
ond dispat
h table 
an be of three types: lo
al, remote, and spe
ial. Lo
al system 
alls are

exe
uted at the PE whi
h hosts the body of the pro
ess. Remote system 
alls are simply forwarded

to the PE whi
h has the deputy, and are exe
uted there. Spe
ial system 
alls are those system 
alls

that require spe
ial a
tion to be taken. Of the 146 system 
alls supported by the BSD/386, 9 are
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lo
al, 133 are remote, and only 4 are spe
ial.

During the exe
ution of the system 
all, the deputy might have to a

ess the user address spa
e

of the pro
ess. These 
ases are handled by requests sent from the deputy, and served by the body.

This me
hanism is also used by the deputy for other requests, e.g. setting up memory when running

a new program using the exe
ve() system 
all.

Most of the body's memory management is handled at the host PE. The only ex
eption to

this are page in requests from the �le system. This ex
eption is essential, as �le systems di�er in

di�erent PEs. Paging from a �le o

urs frequently in pure exe
utables, where the �le is mapped

to the pro
ess's memory, and is paged in on demand. Paging from a �le will also o

ur as a result

of the mmap() system 
all whi
h is used to map �les to the pro
ess's address spa
e. This paging

is handled by sending the deputy a request for data. The deputy then reads the data and sends it

to the body.

The body, like a standard pro
ess, 
he
ks for signals before the transit to user mode. Signals

are, however, treated in a di�erent way. Syn
hronous signals, su
h as 
oating point over
ow,

or segmentation violation, whi
h are generated by the PE in whi
h the body is exe
uting, are

forwarded to the deputy. The deputy is responsible for pro
essing the signals, de
iding what a
tion

to take, and informing the body of this a
tion. When 
he
king for signals, the body also 
he
ks if

the deputy had requested its attention, and if so it sends a null request to the deputy.

4.2 The Deputy

The deputy is implemented as a UNIX pro
ess. The deputy, unlike regular pro
esses, has only

system 
ontext, and no user 
ontext. Like the body, the deputy has a 
ommuni
ation 
hannel,

whi
h is used to 
ommuni
ate with the body.

Generally, the deputy is in a wait state, waiting for the o

uran
e of an event. When an

event o

urs, the deputy handles it, and when it �nishes it returns to the wait state. An event


an be either a request from it's body, or the posting of a signal to the pro
ess. In 
ase of an

asyn
hronous event, e.g. the posting of a signal, the deputy sends the body a request to initiate

a 
ommuni
ation transa
tion. This request is required to avoid ra
e 
onditions that might result

from the asyn
hronous nature of the event.

While serving the request the deputy might have to a

ess the user's address spa
e. A

ess

attempts should be inter
epted and sent to the body. To enable this, the interfa
e from the system
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ontext to the user memory is modi�ed. Fun
tions like 
opyin() and 
opyout() �rst 
he
k if the

running pro
ess is a deputy. If it is not, the standard fun
tion is exe
uted. Otherwise a request for

data transfer is sent to the body, whi
h handles the transfer.

4.3 Intera
tion Management

The body and the deputy 
ommuni
ate over a 
ommuni
ation 
hannel using a modi�ed version

of TCP as the transport proto
ol. The rationale for using TCP and the modi�
ation applied, are

explained in Chapter 3.

The intera
tion between the body and the deputy is done in transa
tions. A transa
tion starts

when the body asks the deputy to perform a task on its behalf, and ends after the deputy handles

the request and reports the body of all asyn
hronous events that had o

urred sin
e the previous

transa
tion. This way the body is always the initiator of transa
tions, and the deputy always

terminates it.

For the exe
ution of a system 
all, the body sends the system 
all number and arguments to the

deputy. For simple system 
alls, su
h as so
ket() or 
lose(), the deputy exe
utes the system 
all, and

returns its result. Then, if no asyn
hronous events are pending, the deputy informs the body that

the transa
tion terminates. Figure 4.1 (A) demonstrates the 
ow 
ontrol during the exe
ution of

the so
ket system 
all. If no asyn
hronous events are pending the transa
tion termination message

is piggyba
ked on the system 
all result message.

BodyDeputy

Transaction termination

Reply from socket

Socket system call

Deputy Body

Close system call

Reply from close

Signal catch request

Transaction termination

Signal catch reply

A B

Transaction termination

C

Read system call

Copyout request

Copyout result

Reply from read

Deputy Body

Figure 4.1: Communi
ation 
ow in various system 
alls

If there are asyn
hronous events pending, the deputy requests the body to take the appropriate

a
tion before terminating the transa
tion. This situation is demonstrated in Figure 4.1 (B), where
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the pro
ess re
eives a signal it arranged to 
at
h during the exe
ution of a 
lose system 
all. In this


ase the system 
all immediately terminates, and the body is requested to arrange for the exe
ution

of the signal handler.

As already mentioned, in some system 
alls the deputy might a

ess the user data spa
e.

Figure 4.1 (C) shows the 
ow 
ontrol in the system 
all read(), when the deputy exe
utes one


opyout request.

When a signal is sent at the pro
ess, the deputy has to inform the pro
ess of the a
tion to be

taken. If the deputy is in the middle of serving a body's request, it has nothing to do until it is

done serving, when the a
tion will be sent to the pro
ess. If, however, the deputy is not serving a

request, it sends the body a request to initiate a transa
tion. The body will respond by sending a

null request. This null request will initiate a transa
tion, and the deputy will inform the body of

the a
tion to be taken before it terminates the transa
tion. The sequen
e of operations taken in

this 
ase is shown in Figure 4.2 (A).

BodyDeputy Deputy Body

A B

Transaction request

Null request

Signal catch request

Signal catch reply

Transaction termination

System call

System call reply

Signal catch reply

Transaction termination

Signal catch request

Transaction request

Figure 4.2: Communi
ation 
ow in signal handling

The �rst two messages may seem to be redundant; it may seem that it is possible for the deputy

to initiate a transa
tion, and send the a
tion as the �rst message. The problem with this s
heme

is that it may 
ause a ra
e 
ondition. If the body has sent a system 
all request, whi
h have not

yet arrived, or will attempt to send a request before it re
eives the a
tion, both sides will have to

agree on whi
h event o

urred �rst. To preserve the UNIX [LMKQ89℄ semanti
s, this a
tion should

always be the system 
all. The deputy will then have to roll-ba
k all of the signal pro
essing it

did, serve the system 
all, and pro
ess the signal again. The body 
annot keep the signal a
tion,

and exe
utes it after the system 
all sin
e the system 
all might blo
k the signal, or modify the
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a
tion to be taken. Eliminating the transa
tion and null request messages will result in greater


omplexity in the deputy and, as signals are not very frequent, seems to be unne
essary.

If the same ra
e 
ondition o

urs between the transa
tion request message and a system 
all,

the body simply ignores the transa
tion request. The deputy is waiting for a request from the body,

and will serve a system 
all if it arrives after sending the transa
tion request. When the system


all is done, the deputy will pro
ess the signal, and send the a
tion to the body. Figure 4.2 (B) is

an example of the 
ow in this 
ase.

4.4 Spe
ial Cases

This se
tion presents two spe
ial 
ases; the fork() system 
all, whi
h 
reates a new pro
ess, and

the migrate() system 
all, whi
h is a new system 
all that moves the pro
ess to another ma
hine.

4.4.1 Fork

In BSD/386, like UNIX, the only way for a user to 
reate a new pro
ess is to invoke the fork()

system 
all. The invoking pro
ess is 
alled the parent pro
ess, and the newly 
reated pro
ess is


alled the 
hild pro
ess. On return from the system 
all the 
hild pro
ess is an exa
t dupli
ate of

the parent. The two di�er only in the pro
ess ID.

When a pro
ess whose body have migrated forks both deputy and body are forked, and a


ommuni
ation 
hannel is established between the two parts of the 
hild pro
ess. Figure 4.3 shows

some of the stages in a

omplishing this. We start from one split pro
ess (A). The body sends a

request to the deputy to open a 
ommuni
ation 
hannel, and forks a new deputy (B). The body

then forks, leaving the new 
ommuni
ation 
hannel for the 
hild body.

As the deputy forks in the middle of the transa
tion, both parent and 
hild deputies send the

transa
tion termination message. The parent deputy forks after it re
eives the termination signal.

When forking the body, 
are should be taken that the 
hild waits for a termination message on his


hannel.

4.4.2 Migration

The system supports a new system 
all that moves the body to a new PE. Migrating the pro
ess

involves several stages. These stages are depi
ted in Figure 4.4.
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Figure 4.3: The fork() system 
all

In the initial state (A), we have a split pro
ess. When the body invokes the migrate system 
all,

the deputy starts a pro
ess on the target PE, whi
h will be the new body, and holds a 
ommuni
ation


hannel to it (B). The �rst 
ommuni
ation to the target PE is done using a migration daemon on

it, whi
h waits for migration attempts, and 
reates the pro
esses for the new bodies.

The new body uses its indire
t 
hannel via the deputy, to inform the body of the address

of a 
ommuni
ation port it opens for the a
tual migration. The body 
onne
ts to this address,

establishing a third 
ommuni
ation link (C). Using this new 
ommuni
ation link, the body sends

its state (i.e. memory maps, memory 
ontents, mmaped �les information, program state, et
.) to

the new body, whi
h be
omes an exa
t dupli
ate of the body. The original body then 
loses the


onne
tion down, and terminates, leaving the new body in the target PE (D).
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Chapter 5

Performan
e

This 
hapter presents performan
e results obtained from the implemented prototype. The tests

were exe
uted on 2 Intel Professional/GX workstations, ea
h with an Intel 486DX/33 Pro
essor,

16MB main memory, and an SMC WD8013EPC Ethernet 
ontroller.

The �rst se
tion provides a 
omparison of remote vs. lo
al system 
all exe
ution time. Se
tion 2

presents a disse
tion of the overhead in the exe
ution of remote system 
alls.

5.1 Remote System Calls

System 
alls are the main interfa
e between the deputy and the body. The frequent use of system


alls in pro
esses make them the key fa
tor in the remote exe
ution overhead. This se
tion shows

the overhead of exe
uting a remote system 
all.

5.1.1 Measurement Te
hnique

Remote system 
alls overhead was measured by running a set of ben
hmarking programs. Ea
h

ben
hmark measures the exe
ution time of one system 
all. A system 
all is exe
uted 100,000 times

on the lo
al PE, and 10,000 times on the remote PE. The repetition is required to disseminate the

pro
ess initialization overhead, and to avoid 
u
tuations due to the 
lo
k pre
ision. In
reasing the

number of repetitions has no signi�
ant e�e
t on the results.

This measurement method is good for idempotent system 
alls, whose exe
ution time does not

depend on the number of previously exe
uted system 
alls. It fails, however, for system 
alls that

modify the state of the pro
ess, or the obje
t they operate upon. For example, the write() system
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all enlarges a �le ea
h time it is exe
uted. To measure su
h system 
all exe
ution times, the

ben
hmark nulli�es the side e�e
ts of the measured system 
all using an idempotent system 
all,

the exe
ution time of whi
h is known. The exe
ution time of the nullifying system 
all is then

subtra
ted from that of the 
ombined 
alls to get the exe
ution time of the measured system 
all.

5.1.2 Results

Performan
e measurements were performed for the following system 
alls:

� 
lose()

� lseek()

� open()

� write()

The measurements results are summarized in Table 5.1.

Sys
all Lo
al (ms) Remote (ms) Slowdown


lose :024 3:27 136:3

lseek :025 3:28 131:2

open :610 7:43 12:2

write 1K :340 9:84 28:9

write 8K 1:450 24:65 17:0

Table 5.1: Exe
ution times of remote vs. lo
al system 
alls

As expe
ted, remote exe
ution of short system 
alls has a very large slowdown ratio. Heavier

system 
alls, whi
h require data transfer, has a larger absolute overhead, but the slowdown ratio

is mu
h lower.

5.1.3 A Closer Look on write()

This se
tion provides a 
loser look on the write() system 
all. In parti
ular we show the e�e
ts

of the size of the written blo
k on the performan
e of the remote write. Figure 5.1 displays the

remote and lo
al exe
ution times for the write() system 
all, with varying blo
k sizes.
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Figure 5.1: Write() system 
all exe
ution times

As the graph shows, the exe
ution times of both the lo
al and the remote versions of the write()

system 
all are proportional with the size of the written blo
k. As the pa
ket size in
reases, the

slowdown ratio is de
reased, as shown in Figure 5.2.

5.2 Overhead Disse
tion

The previous se
tion presented the overhead in
urred in remote exe
ution vs. lo
al exe
ution of

various system 
alls. In order to 
hoose the right approa
h towards improving these ratio, one has

to know the weight of the various 
omponents of the overhead.

This se
tion presents a disse
tion of the overhead into its various 
omponents.

5.2.1 Fa
toring the Overhead

As the pro
ess uses the 
ommuni
ation 
hannel only to forward requests and replies to/from the

deputy, the only sour
e for overhead is the 
ommuni
ation. The total overhead of a given system


all is, therefore, the sum of the message laten
ies of the 
ommuni
ation messages sent between

the body and the deputy, where message laten
y is de�ned as the time sin
e one side of the
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ommuni
ation de
ides to send a message to the other, until the message is a

epted by the other

side.

The message laten
y has the following 
omponents:

� Network Laten
y This is the time sin
e a pa
ket is delivered to the interfa
e at the sending

ma
hine, until the pa
ket is 
olle
ted from the network by the re
eiving ma
hine's network

interfa
e, and is passed to the system to be handled.

� IP Overhead This is the overhead in
urred by IP's handling of the pa
ket, at both the

sending and the re
eiving ma
hines.

� TCP overhead The overhead indu
ed by the TCP proto
ol management.

� Data Pa
kaging The time it takes for the sending ma
hine to pa
kage the data, and for the

re
eiving ma
hine to unpa
kage it.

� Context Swit
h The re
eiving pro
ess is usually not a
tive. This part in
ludes the time it

takes to re-a
tivate it.
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The following se
tions des
ribe these 
omponents, the methods used to measure ea
h of them,

and the measurements results.

Network Laten
y

The network laten
y is the time it takes for the network to transfer a message from one node to

another. More pre
isely, this is the time sin
e a pa
ket is handed to the interfa
e layer in the

sending node, until the interfa
e layer at the re
eiving node deliver the pa
ket to the upper layers.

Measuring the network laten
y was done by writing a `ping-pong' proto
ol. This proto
ol simply

mirrors the �rst 10,000 pa
kets it re
eives from the network interfa
e, at whi
h time the pa
kets

are dropped. By sending one pa
ket to this proto
ol on the remote node, and monitoring the time

it takes for the proto
ol to start dropping pa
kets we were able to measure the round-trip time.

As the proto
ol does nothing but forwarding the pa
ket, the network laten
y is half the round-trip

time. Measured laten
ies for various pa
ket sizes on an Ethernet network are shown in Figure 5.3.
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Figure 5.3: Ethernet network laten
y (ms)

The measured network laten
y is roughly (328 + 2:59n)�s for an n bytes pa
ket. The network

interfa
e is optimized for small pa
kets, and is able to redu
e this �gure by 41�s for pa
kets of size
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between 89 and 104 bytes, and 83�s for smaller pa
kets.

IP Overhead

IP overhead was measured using the same method used for measuring the network laten
y, namely,

a spe
ial purpose `ping-pong' proto
ol. This method gives the round-trip time for an IP datagram.

By subtra
ting the network laten
y from these results we were able to 
al
ulate the IP overhead.

This overhead is 184�s, regardless of the pa
ket size. Datagrams larger then an Ethernet pa
ket

were not measured, as TCP does not use the IP fragmentation.

Context Swit
h

To measure the 
ontext swit
h time the following ben
hmark was exe
uted. A bidire
tional 
om-

muni
ation 
hannel was opened. One data byte was repeatedly sent from one endpoint to the other

and ba
k again. This ben
hmark was exe
uted twi
e, the �rst time with one pro
ess doing all

the operations, and in the se
ond two pro
esses were used, one at ea
h 
ommuni
ation endpoint.

The only di�eren
e between the exe
ution times of these two runs is due to the 
ontext swit
hes

required in the se
ond run. The total exe
ution time di�eren
e was divided by the number of


ontext swit
hes exe
uted, and the result is an average of 165�s for a 
ontext swit
h.

The message laten
y in
ludes one 
ontext swit
h at the re
eiving side. A 
ontext swit
h at

the sending side will o

ur after the pa
ket has been transmitted, and will therefore, overlap other

events.

TCP Overhead

TCP was also measured using the same `ping-pong' method, only the 
ommuni
ating entities were

two user-level pro
esses. By subtra
ting the IP overhead, network laten
y, 
ontext swit
h time,

and system 
all overhead from the resulting round-trip time we found that the modi�ed TCP (with

no 
he
ksum) overhead is independent of the volume of transmitted data. This overhead amounts

to 825�s.

Data Pa
kaging

To measure the data pa
kaging overhead, some of the ben
hmarks were exe
uted on a spe
ial

kernel that uses the pa
kaging of the intrapro
ess 
ommuni
ation, but instead of forwarding the
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pa
kets to/from a deputy, 
alls the unpa
kaging fun
tions in the 
alling pro
ess. The resulting

measurements gives an overhead of about (75 + :03n)�s for pa
kaging n bytes.

5.2.2 Validating the Measurements

Validation of the above measurements was done by 
al
ulating the expe
ted overhead for various

system 
alls, and 
omparing the result with the measured overhead. Tables 5.2 and 5.3 present

the 
al
ulation of the expe
ted overhead for the system 
all 
lose() and for the write() system 
all

writing 1KB of data, respe
tively.

Fa
tor Request Reply Total

Network 411 421 832

IP 184 184 368

C-Swit
h 155 155 310

TCP 825 825 1; 650

Pa
kaging 77 77 154

Total 1; 652 1; 662 3; 314

Table 5.2: Expe
ted 
lose() system 
all overhead (�s)

The overhead in the 
lose() is due to two messages: the request, and the reply. The request is

64 bytes long, and the reply is 68 bytes long (in
luding the 40 bytes headers of TCP and IP). The

total expe
ted overhead is 3:314ms and the measured overhead, as 
an be extra
ted from Table 5.1,

is 3:256ms.

System Call 
opyin()

Fa
tor Request Reply Request Reply Total

Network 431 421 390 3; 125 4; 367

IP 184 184 184 184 736

C-swit
h 155 155 155 155 620

TCP 825 825 825 825 3; 300

Pa
kaging 77 77 77 182 413

Total 1; 672 1; 662 1; 631 4; 471 9; 436

Table 5.3: Expe
ted overhead of write() of 1KB (�s)
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The write() system 
all has a request size of 72 bytes, and the reply is 68 bytes long. During

its exe
ution write() 
alls 
opyin() to 
opy data from the body. The 
opyin() request is 56 bytes

long. The reply, whi
h 
ontains the data, is 1,080 bytes long. The expe
ted overhead of a remote

invo
ation of a write() system 
all is 9:436ms, while the measured overhead is 9:5ms.

5.3 Communi
ation Improvements

As 
an be seen in Figure 5.4, the network laten
y, and the TCP proto
ol overhead 
onstitutes the

major parts of the overhead for the measured 
ases. This se
tion dis
usses the possible gains from

improving those layers.

Close()

Write()

0 1 2 3 4 5 6 7 8 9 10

Time (ms)

Network IP TCP PackagingC-Switch

Figure 5.4: Communi
ation overhead 
omponents

5.3.1 FDDI

The �rst 
onsidered improvement is repla
ing the Ethernet network used by the prototype to

an FDDI network. FDDI is a token ring network with a bandwidth of 100Mbps, operating on

�ber-opti
s te
hnology. As the Ethernet's bandwidth is only 10Mbps, and sin
e other features

of the FDDI are designed to provide better performan
e, it is possible to assume that the FDDI

performan
e is tenfold that of the Ethernet.

Given this assumption, the e�e
t of repla
ing the Ethernet network by an FDDI will be redu
ing

the network laten
y by 90%. This will redu
e the overhead for a remote invo
ation of the 
lose()

system 
all to 2:565ms, or an improvement of 23%. The expe
ted slowdown ratio is then 108.

These results will be very similar for other light system 
alls, su
h as lseek() or so
ket().

For system 
alls that require bulk data transfer, su
h as write(), the improvement will be
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onsiderably better. For example, for the 
ase of writing 1KB, the network laten
y will be redu
ed

from 4:367ms to 437ms, whi
h means the total overhead is redu
ed to 5:506ms, or an improvement

of 43%.

5.3.2 Repla
ing TCP/IP

For short pa
kets a major part of the overhead is 
aused by the TCP and IP proto
ols. The TCP

proto
ol is designed to give a

eptable performan
e for all types of networks. IP is designed to

work in a dynami
, large internetworking environment. The generality of both proto
ols results in

both large headers, and a large amount of 
omputation.

We believe that a spe
ial-purpose, reliable proto
ol for a distributed environment 
an have a

signi�
ant performan
e improvement over TCP/IP. If su
h a proto
ol 
an be implemented to be

10 times faster than TCP/IP, its use will 
onsiderably redu
e the overhead in
urred by a remote

exe
ution of a system 
all. The total overhead for the remote exe
ution of the 
lose() system 
all

will be redu
ed to 1:498ms, or an improvement of 55%. For the write() system 
all the improvement

will be 38%, and the overhead will be 5:804ms.
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Chapter 6

Con
lusions

This work presented the deputy me
hanism for a
hieving transparent pro
ess migration. The major

idea in the me
hanism is splitting the pro
ess into two parts, the �rst of whi
h does the a
tual


omputation, and the se
ond is responsible for keeping the pro
ess environment. These two parts


ommuni
ate a
ross a 
ommuni
ation 
hannel.

We have implemented a prototype of a deputy-based distributed operating system. The proto-

type supports dynami
 load balan
ing based on the migration me
hanism presented in this work.

The implementation of the prototype required adding 7,200 lines of 
ode to the original kernel

sour
es, whi
h are 190,000 lines long. 30 sour
e �les out of the original 560 were modi�ed to insert

hooks for the deputy, and body, and to break several routines. Of the aforementioned 7,200 lines,

only 5% are ma
hine dependent. These are those dealing with restoring the state of a migrating

body, and with setting the 
oating point unit for the load balan
ing 
omputations.

Further study is still required in the 
ommuni
ation domain. The intrapro
ess 
ommuni
ation

proto
ol 
an be 
onsiderably improved, the 
hoi
e of TCP as the transport proto
ol should be

re
onsidered, and the suitable hardware layer should be sele
ted. A se
ond area of resear
h is

singling out the frequently used resour
es, and making them globally available.

One possible family of su
h system 
alls is those dealing with interpro
ess 
ommuni
ation. In

the 
urrent prototype, data transferred between two pro
esses might have to travel twi
e over the

network. First from the sending body to its deputy, and then from the re
eiving pro
ess's deputy

to its body. One of these hops 
an be avoided by migrating so
kets (
ommuni
ation endpoints)

with one of the pro
esses that uses them. Implementing migrateable so
kets will require a new

transport layer proto
ol that 
an support reliable many-to-many 
ommuni
ation.
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