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A smooth object depicted in a photograph will often
exhibit brightness variation, or shading. Of interest in
computer vision is the problem of how object shape may
be determined from image shading. Various computational
techniques have emerged that perform reasonably well in
solving this problem. However, these methods typically
require substantial scene information prior to commence-
ment. This requirement can be reduced by using pre-
processing techniques to estimate, for a given image, the
direction of the principal light source, or “sun”’. In this
paper, we conduct a comparative performance analysis of
these techniques, revealing their poor versatility. An infor-
mal study is undertaken of the ability of people to perceive
the principal light source direction from synthesised
images. Some implications of this work for models of con-
gition are discussed. :
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1 INTRODUCTION

A black and white photograph of a smooth object will
often exhibit brightness variation, or shading. Of interest in
computer vision and perception psychology has been the
inverse problem of how object shape may be extracted
from image shading (eg see Horn, 1975; Horn and Brooks,
1989). Many computational techniques have been deve-
loped to solve the shading problem, and some of these
perform reasonably well in favourable circumstances.
However, a difficulty with most of the computational
schemes is the need for considerable prerequisite informa-
tion relating to the conditions under which a given image
was formed. This is not surprising given that the shape
from shading problem cannot be mathematically formu-
lated, much less solved, without such information.

Contrasting with this is the apparent ease with which
people perceive shape from shading, without prior knowl-
edge of the scene conditions. Since (in a formal sense) this
would appear to be impossible, it must be that people make
certain assumptions, either explicitly or implicitly, relating
to the scene conditions, and that these assumptions lead to
fairly robust perceptions of shape in the presence of a
variety of actual conditions. (Not that we should hold an
exaggerated opinion of human capability in this regard.) It
might be, for example, that people undertake a pre-
processing step in order to determine the direction of the
principal light source, or sun. It is of interest to note that
psychological tests show that people have a decided predi-
lection for perceiving shapes in an image that are consist-
ent with a single sun in a specific direction (Ramachan-
dran, 1988).

In this article, we analyse the performance of several
computational techniques for automated recovery of light
source direction. We also report on our informal studies of
the human perception of source direction from single
imagery. We conclude with some remarks concerning the
likelihood of there being a human pre-processing phase to
determine source direction, commenting on some relevant
studies due to Mingolla and Todd (1986).

2 TESTING OF AUTOMATED TECHNIQUES

2.1 Methods Considered

All of the methods tested seek the slant and tilt of the
source direction, as defined in Figure 1. Details of their
derivations and formulations may be found in Gibbins,
Brooks, Chojnacki (1991). The methods considered are:

Tilt Estimation

— Pentland Method: Under the assumption of a uniform
distribution of surface normals, an estimate for light
source tilt is expressed in terms of the mean intensity
changes in several directions (Pentland, 1982).

— Lee and Rosenfeld Method: Assuming a uniform distri-
bution of surface normals, an estimate for light source
tilt is derived from the mean values of the first deriva-
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Figure 1. Slant and tilt definitions.

tives of image intensity (Lee and Rosenfeld, 1985).

— Contour Method: Assuming either the presence of an
occluding boundary, or a boundary where the surface
slant is constant and the surface tilt is perpendicular to
the boundary, an estimate for light source tilt is
expressed in terms of intensity around a closed boun-
dary (Zheng and Chellappa, 1990; see also Zheng and
Chellappa, 1991).

— Voting Method: This is a variation on the method of Pent-
land, where local changes of intensity are used to give a
local estimate of tilt. By computing the mean of the sine
and cosine of the local estimates for tilt, an overall value
for light source tilt is obtained which is not biased
towards larger intensity changes (Zheng and Chel-
lappa, 1990).

Slant Estimation

— Pentland Method: By assuming that the surface approx-
imates a sphere, an estimate for slant is derived from the
calculated tilt and the variance of image intensity
changes in several directions (Pentland, 1982).

— Lee and Rosenfeld Method: Assuming again that the
surface approximates a sphere, an estimate for slant is
derived from the mean intensity and the mean squared
intensity over the illuminated portion of the surface
(Lee and Rosenfeld, 1985).

— Zheng and Chellappa Method: This method is a modifi-
cation of the slant estimator of Lee and Rosenfeld
which additionally takes into account the portion of the
image in shadow (Zheng and Chellappa, 1990).

— Disc Method: This method originates from an attempt
to rationalise some of the arguments of Pentland. An
estimate for slant is derived from the variance of inten-
sity changes in a chosen direction, and the mean inten-
sity changes along orthogonal axes within a circular
subregion of the image which is free of shadow (Gib-
bins et al, 1991).

— Shadow Method: Assuming that the object approxi-
mates a sphere, a simple slant estimator is derived from
the proportion of the surface in shadow as compared to
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that which is illuminated. This method is used in our
analysis as a lower-bound technique that other methods
ought to better (Gibbins et al, 1991).

2.2 Implementation Aspects

Each of the methods was tested on a number of images of

simple smooth surfaces. Images were generated syntheti-

cally under the assumption that a point light source illumi-
nates a Lambertian surface. Noise and ambient lighting
were absent. The chief aim was to investigate the perfor-
mance of the various methods when confronted with
images of surfaces whose shapes were at variance with
assumptions made in the derivations of the methods. It was
felt that consideration of noise, ambient lighting, non-

Lambertian reflectance and other factors would, at this

stage, obfuscate our investigations. Most images were syn-

thetised via orthographic projection onto a 32 x 32 grid,

with intensity values in the continuous range [0, 1].

The shapes employed were:

— Sphere: this being an ideal surface for all of the
methods.

— Ellipsoids of various eccentricities: these constituting a
relatively mild departure from the sphere.

— Ellipsoid with an added lump: this being highly
asymmetric.

— Stretched Gaussian: a Gaussian-like solid of revolution
stretched along a horizontal axis, departing from the
aforementioned surfaces in having a flattish periphery.

— Crater: this exhibiting a large concavity, and also being
surrounded by a flattish periphery.

Figure 2 displays the various shapes, with the exception
of the sphere.

First-difference approximations were used to compute
derivatives of image intensity needed by most of the
methods. Expectations were computed by summing values
over an appropriate region and dividing by the number of |
points sampled. Four image directions were used in apply-
ing Pentland’s tilt estimator, one in each of the directions
of the x and y axes, and two others at 45° to these. It is
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Figure 2. Shapes used in the performance analysis: Ellipsoid, Ellipsoid
with lump, Stretched Gaussian and Crater.
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Figure 3. Tilt error against actual tilt for ellipsoids of varying eccentricity. Slant is fixed at 45 degrees, errors are shown in degrees.

worth noting that only two directions are actually required
here, and if only two are used, then the method is equival-
ent to the tilt estimation method of Lee and Rosenfeld.

2.3 Estimating Tilt

We now examine results achieved by the Pentland, Lee
and Rosenfeld, Contour, and Voting methods in determin-
ing the tilt component of the source direction.

Test 1: Response profiles for sphere and ellipsoids

In these tests, each method was applied to an image of a
sphere, as well as to images of three ellipsoids. The princi-
pal x, y, z axes of the ellipsoids were in the ratios 2:3:3,
1:2:2,and 1:3:3. (Of course, the sphere may be regarded as
having axis ratios of 1:1:1.) Source slant was fixed at 45°,
and the angle of tilt was varied from 0° to 360°. Graphs
are shown in Figure 3 of actual tilt against error in the
estimate of tilt for each of the surface shapes and methods
mentioned above. As is to be expected, all methods per-
formed well on the image of the sphere. However, in all
cases the estimate of tilt worsened as ellipsoid eccentricity
increased. The estimators of Pentland, and Lee and Rosen-

feld produced errors of up to 40°. Both the Voting and
Contour methods worked relatively well, with the Contour
method being least affected by variation in eccentricity,
since it only uses points near the boundary.

Test 2: Error surfaces for an ellipsoid

Attention was then turned to an image of an ellipsoid with
axes in the ratios 5:8:7. Results for this test are given in
Figure 4. Here, error surfaces are displayed, each having a
circular (unit-disc) domain. A light source direction is
associated with each point in the domain. This direction
coincides with that of the surface normal of the unit hemi-
sphere corresponding to the given point in the domain.
Each height value of the error surface specifies the error in
estimated tilt. The error surface thus arises out of tests on
hundreds of images, each generated under a different light
source direction. These directions were varied through the
range of possible slant and tilt values. The ideal error
surface is a flat disc in the zero height plane. Note that
height is scaled so that an error surface corresponding to a
unit hemisphere would have a maximum error of 1 radian
(approximately 57°). Note also that when the slant is zero,
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Figure 4. Tilt error surfaces describing the performance of various
methods when confronted by images of an ellipsoid (see Section 2.3).

the tilt angle is undefined. An interpolated artificial value
hasbeen given at each surface centre. A spike nevertheless
appearsin some diagrams due to a tendency for the error to
increase markedly as the centre is approached. As can be
seen from the diagrams, the methods of Pentland, and Lee
and Rosenfeld performed poorly at certain light source
tilts, independently of slant; nevertheless, the error did not
exceed 20°. Once again, the Voting and Contour methods
performed reasonably well.

Test 3: Lumpy ellipsoid

Here the previous test was repeated with the only differ-
ence being the nature of the imaged surface shape. This
time a smooth lump was added to the ellipsoid (refer to
Figure 2). The lump was placed away from the centre so as
to enhance the asymmetry of the surface. The aim here
was to see how performance might be affected by addi-
tional surface undulation and asymmetry. The results illus-
trated in Figure 5 are not dissimilar to those of the previous
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Figure 5. Tilt error surfaces describing the performance of various
methods when confronted by images of an ellipsoid with lump.
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Figure 6. Tilt error surfaces describing the performance of various
methods when confronted by images of a stretched Gaussian surface.

test, with the exception of the Voting method whose per-
formance deteriorates.

Test 4: Stretched Gaussian and Crater

The methods gave almost ideal results for the Crater sur-
face (not illustrated), and quite good results for the
Stretched Gaussian (see Figure 6), with the notable excep-
tion of the Voting method, which performed very poorly.

2.4 Local Slant Estimation

The tests carried out on slant estimation were analogous to
those for tilt estimation. One difference, however, was that
the ellipsoids were produced by stretching a sphere in the
direction of the z-axis instead of the x-axis. We compare
the methods of Pentland, Lee and Rosenfeld, Zheng and
Chellappa, along with the Disc method and the Shadow
method. Recall that the last of these methods is very naive
andisintended to give a lower bound on performance that
other techniques ought to better.

Test 1: Response profiles for sphere and ellipsoids

Slant error against actual slant is displayed in Figure 7 for
a variety of ellipsoids as well as the sphere. The various
estimation techniques exhibited quite different responses,

.even when confronted with the simple sphere. Thus, for

example, Pentland’s estimator deteriorated (with an error
of up to 40°) as light source slant was increased, while Lee
and Rosenfeld’s estimator deteriorated as slant decreased.
A problem with the Pentland estimator is that as light
source slant increases, so too the portion of the surface in
shadow increases, with the consequence that the assump-
tion of isotropic distribution of normals becomes less and
less valid.
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Figure 7. Slant error against actual slant for ellipsoids of varying eccentricity. Tilt is fixed at 0 degrees, errors are shown in degrees.

The Disc estimator performed best of all, except in the
case of large slant when there were insufficient illuminated
points in the disc for the estimates of image derivatives to
be reliable. This estimator is designed precisely to over-
come the aforementioned problem with the Pentland
method. The Shadow estimator performed well, but with
some instabilities when few shadow points existed in the
image, this occurring with small slant.

Figure 7 also shows responses to ellipsoids of various
kinds. Pentlant’s method remained relatively stable over
the range of eccentricities, with errors not worsening much
over those recorded for the sphere. On the other hand, the
methods of Lee and Rosenfeld, and Zheng and Chellappa
were very sensitive to the changes in eccentricity. Note
that only the better performing Zheng and Chellappa
method is illustrated, this yielding small errors for high
values of slant. However, with an ellipsoid of eccentricity
2, the error exceeded 25° for any slant of less than 15°.
The Disc method showed deterioration as slant was
increased.

The Shadow estimator did not perform as well over
midrange slant values (20°-60°) as at the extremities of

slant. Interestingly, however, the errors exhibited were
comparable with those obtained for the Zheng and Chel-
lappa method; indeed, the Shadow method gave less signif-
icant errors in the case of ellipsoids with larger
eccentricity.

Test 2: Error surfaces for an ellipsoid

Here we again examine the performance of the methods
when applied to images of an ellipsoid generated under a
range of source directions. (Again, these directions were
varied through the range of possible slant and tilt values.)
Figure 8 clearly illustrates the poor performance of the Lee
and Rosenfeld estimator as compared to Zheng and Chel-
lappa’s improved version. Performance of the other estim-
ators was quite good.

Test 3: Lumpy ellipsoid

When confronted with an image of an ellipsoid with pro-
truberance, all of the methods suffered some degradation
in performance (see Figure 9). Pentland’s method gave
poor estimates of steeper light source slants. The Zheng
and Chellappa method performed somewhat better. The
Disc method struggled severely in this test, producing
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Figure 8. Slant error surfaces describing the performance of various
methods when confronted by images of an ellipsoid.

highly unreliable estimates for steeper slants. Perhaps sur-
prisingly, the Shadow method coped well with images of
the test surface, again performing much like the Zheng and
Chellappa method.

Test 4: Stretched Gaussian and Crater

Here, the Gaussian and Crater images were used, and all of
the methods failed to produce remotely tolerable results
(consequently no figures are presented). The assumptions
implicit in the derivations of all methods are violated in the
case of these surface shapes.

2.5 Comments
Itis evident from the testing that each method has domains
in which it works well, and domains in which it performs
badly. All of the methods are essentially based on the
assumption that the depicted surface is spherical. As men-
tioned previously, this strong assumption is made in order
to render tractable a highly ill-posed problem. When the
assumption is violated by a given surface, then estimates of
source direction tend to degrade. (Moreover, estimates are
similarly unreliable when an imaged surface satisfies the
assumption, but is partially occluded from view by other
objects, or is only partly visible due to image clipping.)
Also, determination of slant appears to be a more difficult
problem than determination of tilt, which is not surprising
given that the former is not confined to the image plane.
Comparison of Lee and Rosenfeld’s method with the
Zheng and Chellappa improvement shows clearly that the
latter is more stable and accurate. The two methods differ
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Figure 9. Slant error surfaces describing the performance of various
methods when confronted by images of an ellipsoid with lump.

only in that the latter incorporates knowledge of the por-
tion of the region in shadow, the improved performance
therefore being due to the adoption of this additional
information.

It is interesting to reflect on the performance of the
Shadow slant estimator. Although it is much simpler than
methods such as those of Pentland, and Lee and Rosenfeld,
itnevertheless produces comparable results. This is despite
the fact that it uses considerably less data than its counter-
parts, making no recourse to image intensity values or
derivatives, and being simply based on the portion of the
object’s image which is in shadow. That a naive method
performs comparably to the more sophisticated techniques
raises obvious concerns.

It is possible that further improvement in estimates
might be obtained by judicious combination of various
techniques. Nevertheless, it is hard to envisage an auto-
mated technique having true versatility, giving good
responses for a wide range of surface types. For example,
none of the techniques considered is tuned to the situation
in which an essentially planar landscape exhibits undula-
tions. This is commonly found in aerial photographs of
terrain. Horn (1990) has suggested that a useful slant
estimator here might be the inverse cosine of intensity
averaged over the image.

3 TESTING HUMAN PERFORMANCE

3.1 Previous Work

First we consider some psychological studies relevant to
shading analysis.

Ramachandran (1988) suggests that shading is perhaps
one of the most primitive cues for depth, having been
developed early in the evolution of animal life. Thus it may
be that some fish exhibit “counter-shading” in order to
neutralise depth-perception and, presumably, to reduce
the risk of falling prey to predators. It also appears that
shape information obtained from shading can be used as
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Figure 10. Human performance analysis for images of a sphere. Results show: Tilt error vs tilt, tilt error vs slant, slant error vs tilt, and slant error vs

slant.

input to the processing of motion data, and the determina-
tion of figure-ground relations. Contours are shown to be
an important influence on the perception of shape from
shading. Also, as is well known, the human visual system
appears to have a predilection for a single overhead
source, in the sense that shape interpretations of multiple
objects in a scene are generally kept consistent with an
assumption of a single sun in a specific direction.

Berbaum et al. (1983) considered the influence of an
image of a well-known object (such as a human hand) on
the perception of a possibly ambiguous image of an
unknown object. Again, it appears that humans generally
achieve consistency by having the perception of the famil-
iar surface affect the interpretation of the unknown object.
Note that the image of the human hand might be consi-
dered similar in information content to the reflectance
map of Horn and Sjoberg (1979). Further studies are con-
ducted on the memorising of source direction and its con-
ditioning effect on the subsequent interpretation of a
sequence of images.

It is in the work of Mingolla and Todd (1986) that

contributions most relevant to our concerns may be found.
Here, the authors observe that subjects tend to show low
correlation between the quality of their source-direction
estimates, and the quality of their shape estimates. That is,
on a given test, a good estimate may be obtained for source
direction, yet shape might be estimated poorly. Alterna-
tively, shape may be well estimated, but the source direc-
ton might be substantially in error. This, the authors claim,
argues against automated techniques requiring prior
knowledge of the light source direction. The claim is also
made that Lambertian surface reflectance appears not to
be a default assumption in human perception. This is
because the perception of shape seems almost unaffected
by the addition of an arbitrarily significant specular com-
ponent to an underlying Lambertian model. From these
observations, Mingolla and Todd speculate that the human
visual system is not based on an inverting of the image-
forming process. The (global) analysis of contours of con-
stant intensity due to Koenderik and van Doorn (1980) is
cited as an example of an approach that is perhaps more
consistent with human performance.
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Figure 11. Human performance analysis for images of an ellipsoid. Results show: Tilt error vs tilt, tilt error vs slant, slant error vs tilt, and slant error vs

slant.

3.2 The Experimental Environment

Informal tests were carried out on the ability of people to
estimate light source direction from various images of a
sphere and an ellipsoid. Results were obtained from ses-
sions conducted with 24 individuals. Subjects were asked
to examine a given synthetic image, and to gauge the
direction of the sun. They were trained to express their
results in terms of slant and tilt, and were provided with
diagrams useful for estimating angles. Each subject exam-
ined twenty 512 x 512 images of Lambertian surfaces
presented in random order (10 spheres and 10 ellipsoids).
In all, therefore, 480 human estimates of source direction
were obtained. The ellipsoid used in the tests was the same
as that used previously to test the automated methods.

3.3 Performance Analysis

Various results were obtained in response to an image of a
sphere, and these are shown in Figure 10. The following
informal observations are made in relation to the various

plots:

— Tilt estimation error against correct tilt: the graph sug-

172 THE AUSTRALIAN COMPUTER JOURNAL, VOL. 23, No. 4, NOVEMBER 1991

gests that estimation of tilt is unaffected by rotation of

the image.

— Tilt error against correct slant: as the “sun goes down”
tilt error seems to decrease. Of course, it should be
recalled that tilt is undefined at zero slant.

— Slant error against tilt: here it appears that slant estima-

tion is invariant of image rotation.

— Slant error against correct slant: in this test, the variance
of the estimates appears to decrease for small or large
slants. There would also seem to be a tendency to
underestimate small slant values, and to overestimate

large slant values.

Tests were also carried out on images of the ellipsoid,

with similar results (Figure 11).

Finally, histogram-type graphs were plotted of estima-
tion error against the frequency of making that error (5°
ranges were used). One diagram deals with slant error, the
other with tilt error (see Figure 12). Each diagram plots a
graph for the sphere and the ellipsoid. A mean estimation
error of close to zero is indicated in each case. The var-
iance remains reasonably small, increasing somewhat in
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Figure 12. Histogram-like plots of error frequency against estimation
errors in slant and tilt, respectively.

the case of the ellipsoid. Other informal tests not recorded
here suggest that people respond reasonably well in a wide
variety of situations, including, for example, aerially-
viewed terrain.

4 CONCLUSIONS

We now return to the main question posed earlier: Might
prior determination of source direction be a useful
approach to reducing the prerequisite needs of computa-
tional schemes, and might this also be the strategy
employed by the human visual system?

An obvious caveat needs to be registered from the
outset in relation to psychological studies in which the
subject is asked to report on such as perceived light source
direction. Perhaps it is the case that humans determine
source direction prior to shape. Another possibility is that
recovery of source direction and shape is a coupled pro-
cess, with an intermingling of activity. Whichever strategy
is employed, it may well be that the subject has no con-
scious access to the processes involved. If this is correct, a
subject confronted with questions on source direction or

shape will be basing answers upon the outcome of the
complete process of shape and source recovery, not the
process itself. Worse still, it is even possible that the
method used by humans to introspectively compute light
source direction from an image is different from the
method that humans use unconsciously during recovery of
shape from shading. It might even be the case that intro-
spective computation of light source direction uses the
already determined shape of the object. Clearly, it is essen-
tial that results of psychological tests are interpreted with
this in mind.

Returning to the low correlation observed by Mingolla
and Todd between the quality of estimates of source direc-
tion and shape, it is useful to consider the Brooks and Horn
(1985) method, which is the only approach to date that
seeks to determine, in a coupled manner, both shape and
source direction from shading information. In this tech-
nique, a point light source is assumed to illuminate a
smooth Lambertian surface. A dual scheme is employed in
which, repeatedly, shape is computed using an estimate of
source direction, and then a new source direction is com-
puted from the revised shape. The search space for this
scheme is not entirely convex, and so the technique is
susceptible to falling into local minima. It is quite possible
with this method that there will be a difference in the
quality of estimates for source direction and shape. Of
course, it is also possible that both estimates will be poor,
or both estimates will be good, these presumably being
possibilities that also arise in human performance.

Given that the Brooks and Horn method can deliver
estimates for shape and source-direction of differing qual-
ity, we believe that the Todd and Mingolla conclusion that
present shape from shading techniques are wholly inap-
propriate models of cognition is stronger than the evidence
will bear. (What is clear, however, is that the performance
of these techniques is poor in comparison with human
perception, but this is a separate point. We are concerned
here with the possible validity of the methodology.) Our
view is that the question of whether such an approach
could be refined and developed into an adequate model
remains open. A further complicating factor is whether the
Koenderink and van Doorn (1986) approach favoured by
Mingolla and Todd is indeed more consistent with the
observed human differences in quality of estimates, espe-
cially given that there is no shape from shading implemen-
tation based on this analysis. We suggest that similar con-

- jectures of Mingolla and Todd concerning the inadequacy

of both the assumption of Lambertian-ness, and the use of
“local” units of shading data (intensities or intensity gra-
dients, as opposed to, say, global contours of constant
intensity) are also contentious.

On the basis of data before us, early indications are that
it will be extremely difficult (and perhaps impossible) to
generate a robust automated technique for determining
source direction from images exhibiting a wide range of
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surface types. This is because the strong assumptions
needed in the derivation of such a technique are unlikely to
be appropriate to a wide class of shapes. If a robust pre-
process for determination of source direction turns out to
be infeasible, it might then be that the relatively versatile
skills of the human subject are due to a coupled approach
to recovery, in which shape and source are sought in
parallel. Further psychological work is clearly needed to
offer more clues.
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