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SPECTRAL ANALYSIS OF SCHRODINGER OPERATORS
IN NON-SEPARABLE HILBERT SPACES

Wojciech Chojnacki

1. Introduction
Any physical system with n degrees of freedom can be described in terms

of n pais 94> Py of canonical variables, where Qqs ++-» 4, are the so-
called position variables and Pys» ++es P the so—-called momentum variables
of the system. From the classical point of view the state of the system is
determined by the results of measuring the a9y and p; at a gilven instant.
However, as subtle experiments show, the measurements of the a4, and Py
performed repeatedly in a short period of time provide statistical data such
that each product oq 'Upi of the corresponding dispersions qu, UPi is not
"less than a small but non-zero universal constant, The impossibility of effec—
tive experimental determination of the simultanecus positions and momenta of the
system necessitates a suitable modification of the notion of state. It turns
out that a physically reasconable modification is obtained by identifying the
state of the system with an ample collection of the experimental mean wvalues
of functions of the canonical variables. Quantum mechanics sets up a correspon-
dence between this phenomenological notion of state and some mathematical
concepts. that appears within the framework of the so—-called formalism of non-
commuting canonical wvariables. We shall discuss this identification in more
detail.

There is a unique, up to *-isomorphism, C*—-algebra An with unit e which
is generated, as a C*—algebra, by two subsets {u(t):teR"}, {v(t):teR"™} such

that
(1) u(@ = v(@0) = e,

u{s+t) for s, t € Rn,

(2) u(s)u(t)

v(s+t) for 8, t e Rn,

(3) v(s)v(v)

This paper is in final form and no verslon of it will be submitted for publi-

cation elsawhere.
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(4) u*(t) = u(-t) for t e RS,

(5) v*(t) = v(-t) for t ¢ RO,

(6) wu(s)v(t) = els.tv(t)u(s) for s, t e Rn, where s't=31t1+...+sntn
(cf.[11, Th.5.2.8). An is called the canonical commutation relations algebra
over R™. A state w over An is a linear bounded functional such that
|[|w|] = 1 = w(e). Let Ep be the set of all states over A . Ep is
‘n o} n

convex and, under the *-weak topology, it is compact. By the Krein-Milman
theorem, the set E(EAn) of all extreme points of EAn is not empty. Any
element of E(EAH) is called a pure state over Anf Via the GNS construction
(cf.[1], Th. 2.3.16), with each w € EAn one can assoclate an essentially
unique triple (Hw,ﬂw,ww), where Hw is a Hilbert space, Qw is an element

of Hw’ and T is a *-representation of An in Hm sucdh that

(1) the space {ﬂw(A)Qw:AeAn} is dense in Hw (cyclicity of ﬂm

and ﬂw),
(2) w(B*A)= (ﬂm(A) R nm(B)Qw) for A, B e Ap .

If w 1s a pure state over An, then the corresponding cyclic representation

is called regular if the representa-

s is irreducible. A state w over A,

tions t > nw(u(t)) and t +»ww(v(t)) of R™ im Hw are strongly continuous.
We let r(EA ) denote the set of all regular states over An'
n
Quantum mechanics is based on the postulate that each phenomenological
state of a system with n degrees of freedom can be identified with an element
w of E(EAn) n r(EAn) in such a way that, in suitable units, for all s, thn,

. isep it~
the experimental mean value of e Pe 4

= %-m(u(s)v(t) + v(t)u(s)),

where q = (qi, nnl qn) and p = (pl, oR=n=gs pn). The assumption that w 1s
not a mixture of distinct states over An reflects the fact that the phenome-
nological state is supposed to be determined with maximal accuracy. The regula-
rity assumption is of technical character and is introduced to make it possible
to define the quantum mechanical positions Qi“) and momernta Piw) (non-commu—
ting canonical variables) as the products of 1/V¥-1 and the infinitesimal

generators of the groups ¢t +-wm(vi(t)) and t +»ww(ui(t)), respectively, where



SPECTRAL ANALYSIS OF SCHRODINGER OPERATORS etc. 175

v(i(0, .. 0, ty, 0, ccas 0)),
ST,
1-1 entries

vy (B)

ui(t) = u((0, esep 0, £ty 0, oc.y 0)).
——

i-1 entries

That this definition of the Qiﬂ) and Piﬂ) does not depend on w 1s a conse-
quence of the Stone—von Neumann theorem stating that for any w, m'eE(EAn) n
and - Ty with w (cf.[1]1, Cor.5.2.15).
The esqgntially unique cyclip representation w of An assoclated with the

r(EAn) one can ldentify Hw with Hm

pure regular states over A, is called the regular irreducible representation
of Aﬂ. It ecan be reallzed in L2CRn) as the unique representation of An
satisfying

m(u(t))f =T £,

(t e R%, f ¢ L2(Rnf)

T(v(t))f = e_f
where th(x) = f(xtt) and et(x) = eit'x for all x ¢ R™. The necessity
cf introducing the Qiﬁ) and -Piﬂ) arises naturglly when one wants to describe
time evolution of the system. The evolution 1s governed by a strongly continuous
one parameter group (Gt)tGR of unitary operators on LQ(Rn) in such a way
that if Q e Lz(Rn) corresponds to an iniltial state of the system, then Gtﬂ
corresponds to the state after time t. The infinitesimal generator of
(Gt) times 1/vV-1, called the Schr8dinger operator or Hamiltonian of the

teR

system, completely determines (G )

) teR” It takes the form

B = -[(Pl("))2 oot @82 +V_

where VTT = V(Qi“), cers Qiﬂ)) and V, called a potential, is a rgal—valued
Borel function on R" containing information about all the peculiarities of
the system.

If V 1s a special potential of the form
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where ZA =a_, €C for each A and the sum extends only over finite number
of non—-zero XA, then the corresponding operator V_rr can directly be defined

in terms of Tw as being

Aan a,T(v (A ) s (X))

The latter sum makes sense 1f w 15 replaced by any irreducible representation
p  of An. In particular, if p 1s such that the unitary groups t +—p(ui(t))

are strongly continuaus and, correspondingly, have infinitesimal generators

Pip), then one can define a generalized Hamiltonian

. (p),2
H, = E(Pl p]

2 .
b oee. + (PIEp)) I+ VY,
where

Vv
p

]

AZRH akp(vl(ll)'...'vn(ln))-

More generally, if there is a net ((a(a)) ) in CRn' such that
—= A ;~eR aeh :

aled _ (@) (o

A —A

for each o and each A, a, = 0 only for finitely many X

when o 4is fixed, and the limits

1lim ¥ = aia)ﬂ(vl(Ai)-...'vh(An)),

o AeR

1lim z aga)p(vi(ll)°...°vn(kn))

o AeRT
exist .in the sense of strong convergence, then the operators VTr and Vp
defined by these limits give rise to two Hamiltonians Hw and Hp. While
Hp seems to have no direct physical interpretation, it is conceiwvable that
there may ,exist a mathematically interesting relationship between HTr and
H . In the sequel, we shall provide a few examples that will substantiate
this supposition. First, however, we shall take a closer look at

irreducible representations of An.

2. Inneducible hepresentations of An.

Among representations of An the most interesting from our point of view

are semiregular ones. These are such non-regular representations of p of An for
which each group t — p(ui(t)) is strongly continuous. Any representation of
An that is neilther regular nor semiregular will be called irregular.

The basic example of a semiregular irreducible representation of A, 1nvol-
ves the Bohr compactification bR™ of R%. bBR" is a compact Abelian group

with the property that there is a continuous injective homomorphism- o : RP5bR™
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such that a(Rp) is dense in bR" and, for each ¢t e Rn, there is a conti-
nuous chgracter X¢ of bRT such Xeg © @ = €e.. Let P be the normalized
Haar measure on bR® and L2(bRn) be the corresponding Hilbert space based on
P. One verifies easily that thlie representation ¢ of An in L2(b£p)

uniquely determined by

S(u(E)F = T, (\F,

(t e %, F e L2®RY)

o(v(t)F xtF

is semiregular and irreducible.

The Hilbert space in which o acts is not separable ({xt:teRn} is a
complete orthonormal set in L2(bRF)). There exist semiregular irreducible
reprensations of An acting in separable Hilbert spaces. For example, if
v 1s a non-measurable character of Rn, then the representation n of An

determined by
n(u(t)) = w(u(t)),
(t « Rn)

n(v(t)) = y()w(v{t))

is semiregular, irreducible, and acts in L2(Rn).
However, if a semiregular irreducible representation of An is weakly measurable
(as it is in the case of o), then it must necessarily act in a non—separable
Hilbert space (cf.[12]). Weak measurability must be assumed if one wants to
use integration theory, thereby the appearance of non-separable Hilbert spaces
is inevitable in the context of generalized Schrldinger operators.

In a coming section we shall encounter weakly measurable semiregular
irreduci@le representations of An other then o. We conclude thilis section by
exhibiting an irregular irreducible representation of An. An example of such

a representation is provided by T acting in L2(bRn) by the rule

g lel®
T(u(t))F B

1}
m

XeTo () ¥

(FeLz(bRp),teRn; |t

T(v(t))F

1}

>
rt

=
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3. The Bwwat-Shubin-Herczyiski theorem

Let V be a real almost periodic fdnction on RP. Suppose
aikj = afﬁ) for each k

n
((aik))leRn)keﬂ is a sequence in ck such that

and each A, aik) =2 0 only for finitely many X when k is fixed, and

lim [|v - § aik) el|[w = 0.
k-voo AeRT ]
Then the 1limit
lim J a§k>v1(li)-...'vn(ln)
koo AeRD
exists and defines an element V in An. If p 1s a semiregular, irreducible
representation of An’ then Vp = p(V) and one can define a corresponding

Hamiltonian Hp.
The following striking result is due to Burnat, Shubin, and Herczynski
(cf.[2],[6]1,[71,[137).

Theonrem The spectrum of HU is the same as the spectrum of H_.
The recent proof of this theorem given by Krupa and Zawisza [10] uses
ultrapowers of Hilbert spaces and operators. We shall briefly sketch this

proof.
An ultrafilter U on N is a collection of subsets of N such that
1) A e U and AcBcN impldies B € U.
(2) A, B e U implies A n B ¢ U,
(3 @44
(4) for each A c N, elther A e U or N \ A ¢ U.

An ultrafilter is free if It contains the complements of all finite subsets

of N. Given a bounded sequence (an)neN of complex numbers and a free

ultrafilter U on N, there is a € C such that
neN: |a- an| < el el

for each e > 0. a is called the limit of (an)neN with respect to U and

is denoted by 1imuan. If H is a Hilbert space and 1m(H) 1s the Banach
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space of bounded sequences in H, then
oa . _
(), g €1 2 Um ||x || = 03

is a closed subspace of lm(H) and the quotient Banach space

B /U = 17 /M)y € 1@ 1mg| [x || = 03

can be converted into a Hilbert space by taking

(C(x )IIEN [(Y )I'I.GN ) = limu(xns Yn)

as scalar product. HN/U is called the ultrapower of H with respect to U.

For any bounded operator T din H, TN/U defined as

(T i INe )neN = [(Tx )neN

is a bounded operator in HN/U; it is called the ultrapower of T with respect
to U. TIf A is 1in the resolvent set of T and RA(T) is the resolvent of
T at A, then

RA(T)(KI—T) = (AI—T)RA(T) = [k (I the identity operator)
and passing to ultrapowers gives
N N _ N _
®, (HY/W AT-T /W) = QI-T /W) (R, (DN/U) = T,

which shows that A 1s also 1in the resolvent set of TN/U and
RA(TN/U) = R () /U Hence, letting o(A) denote the spectrum of the operator
A, we have G(T /U < o(T). If E ds a reducing subspace for TN/U, then
o ((TV/U) |E) © o(IN/U) and so o((TV/W)|E) < o(T).
It can be shown (this is the main technical ingredient of the proof)
that there exlist two Isometries j:Lz(bRp) > LZ(R@)N/U and k:Lz(Rn) -+
BZ(RP)N/U such that, for each X e C\R, j(Lz(bRp)) is a reducing subspace
for RA(HU)N/U, and

, -1
R, (B )3

R,/ u on 3ZmRM),

i

kRA(H“)k_l RA(HG)N/U on k(Z(RD.

First of these equalities guarantees that U(RA(HU)) < U(RA(H“)), the other
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implies that U(RK(HH)) < U(RA(HU))' Thus G(RA(HU)) = U(RA(HW)) and finally,
by the spectral mapping theorem, U(HU) = U(H“).

By way of application, let us consider the classical problem of qualitative
determination of the spectrum of a one—dimensional Schrl8dinger operator with a
periodic potential with period 2r. TFor each A ¢ [0,1), let E, be the

closed subspace of Lz(bﬁ) spanned Ry
a(d_| ) o (H ) C )
’ Xx+n'*

i ' much difficulty that each E, is an

ﬂ_ﬂéff“r_-_‘h“hhﬁh‘ invariant subspace for H_ and that

i :

! HUIEA has compact resolvent. Thus each
\/

]

]
_/E/\

[

n € Z}. It can be shown without

o(H0|EA) is a discrete subset of R

unbounded from above. As X varies conti-

nuously over [0,1), UCHGIEA) also

varies continuously, and since the

0 1A 1). U(HUIEA) sum up to yield o(Hc), the

latter set has a characteristic band structure. By the Burnat—Shubin—Herczyﬁﬁki
theorem, the same is true of O(H“).

It is worth ncoting that while the sets c(H") and G(Hc) coincide, the
types of the spectra of HTr and HO are different. Indeed, a careful analysis
shows that Hw has purely absolutely continuous spectrum, whereas HU has
pure point spectrum.

As another consequence of the Burnat—Shubin-Herczyiski theorem, we mention

the spectral mixing theorem (cf.[7]). It states that for any real almost
periodic functions V;(L =i = K) on R™ and any mollified characteristic
functions pi(l £ i < K} of disjoint cones in Rn, if we let Hii) be the
Schr8dinger operators with potentials Vi and H:ix be the Schr8dinger operator
K
with potential L. p,V,.,, then
. i'4i
i=1
K . -
U o) c o™,
il i T

4. Finsit order anafoguesd o4 H_

The spectral analysis of Hc for a general-almost periodic potential is

a challenging problem. One can get some idea of the complexity of such
analysis by examining first order analogues of Ho'

Let V be a real almost periodic function on R. Let P(W) and P(d)
be the momentum operators associated with the representations w and g,

respectively, of Al. Let
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and

Let U be the unitary operator in LZ(R) given by
UE = uf (£ e L2(R)),
where

X
u(x) = exp(-i J v{t)dt) (x € R).
0

Then ATr = UPWU_l. In particular, ATr has purely absolutely continuous spectrum.

A similar statement for AG is false. It turns out that the spectrum of A0
is either pure point, or purely singular continuous, or purely absolutely
continuous, and that each of these cases can occur (cf.[3]). Determination

of the type of the spectrum of AU is related to some cohomology theory which
proved to be important in harmonic analysis and ergodic theory (c£.[51). By

using the Trotter product formula, one can show that the unitary group (Ut)tsR

" generated by iAo takes the form

UF =Y (t e R, F ¢ Lz(bR),

t tTa(t)F
where Y: (t, w) +—Yt(w) is a cocycle on bR, i.e., a continuous function on
R x bR with wvalues of modulus 1 such that, for all s, t € R and all
w ¢ bR,

Ys+t(m) = Ys(m)Yt(m+a($)).
Y 1is said to be a coboundary if there exists an invariant section of Y,
i.e., a measurable function X on bR with values of modulus 1 such that,

given t € R,
Yt(m) = X(w)X{w+a (L))

for [P-almost all w din bR. It can be shown that A.0 has pure point spectrum
if and only if Y 1s a coboundary.

The complicated character of the spectrum of AU is reflected in an
unexpected manner in the harmonic—analytic properties of the function u defi-

ned above, which is a generalized eigenfumction of AW. It can be shown, among
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other things, that 4if AU has purely continuous spectrum, then, for each
A e R

1 (T —1x
Fu(d):= 1im == f u(x)e Xdx = 0

2T
T=>eo 7

(cf.[31,[41). From the standpoint of the classical harmonic analysis this
result is quite astonishing, for the usual constructions of functions £ in
Lm(R) such that Ff(A) = 0 for each A eR
T
lim inf 5= J |£Go [2dx > 0
T>oo

=T

are very sophisticated (cf.[8J];[9], Chap. 6 ).

We recall that a ldnear continuocus functiomal m on Lm(R) 1s sald to

be a Banach mean on Lm(R) 1f it is satisfies the following conditions:
1y wm@) =1 ="||ml],
(2) m(Txf) = m(£f) - for f ¢ LmiR) and x € R.

As is known, the set of all Banach means on LW(R) has at least the cardina-—
lity of the hypercontinuum (cf. [111). Given a Banach mean m on Lm(R), a
function £ 1in L (R), we let Fﬁf denote the Fourier transform of f

with respect to m, defined as

me(A) m(fe_x) (A € R).

One can show that if Y 1s a coboundary whose no invariant section is

continuous, then the set

{(qu(A))AeR: m .a Banach mean on Lm(R)}

is C-linearly isomorphic to a closed convex set in € different from a
singleton (cf.[3],[4]). The existence of a function in Lm(R) with the
Fourier transforms with respect to Banach means as above is a very strange
phenomenon, and one wonders whether this phenomenon can easily be exhibited
without making appeal to Aa'

We close this section with a remark on weakly measurable semiregular
irreducible representations of An. With Ac there is associated a weaklf

measurable semiregular irreducible representation « of Al in Lz(bR)
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determined by

k(u(t)) = UtF’

(t € R, F e LZ®R)

k(v(t)) = % F

(recall that (Ut)tER is the unitary group generated by iAU)' Operators AG
with different types of spectrum lead to inequivalent representations of Al.
Now it is clear that some inequivalent weakly measurable semiregular irreducible
representations of An can be constructed by taking the tensor products of
semiregular irreducible representations of Al of the above form and, possibly,

of copies of the regular irreducible representation of Al.

5. Conclusion

It was odr intention in this article to present a circle of ideas related
to the spectral analysis of non-standard Hamiltonians. Some problems in this
area alluded to above have been solved, but many more have not yet been serious-—

ly attacked. Among the latter there are some which we find to be of particular

"interest for further study:

(1) Determine all, up to equivalence, weakly measurable semiregular

irreducible representations of An'

{2) Does the Burnat—Shubin—Herczyﬁski theorem remain true If o Iis

replaced by any weakly measurable semiregular irreducible represen-

tation of A 7
n

(3) What is the general relation between non-standard Hamiltonians and

the generalized eigenfunctions of usual Hamiltonians?
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