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ABSTRACT

We present a novel method for estimating the fundamen-
tal matrix, a key problem arising in stereo vision. The
method aims to minimise a cost function that is derived from
maximum likelihood considerations. The respective min-
imiser turns out to be significantly more accurate than the
familiar algebraic least squares technique. Furthermore, the
method is identical in accuracy to a Levenberg-Marquardt
minimiser, while proving simpler and faster.

1. INTRODUCTION

Many problems in computer vision may be couched in terms
of parameter estimation. Accordingly, much effort has gone
into the development of sophisticated techniques for gen-
erating estimates of parameters. Some of these techniques
utilise covariance information characterising uncertainty in
the data [1, 2]. This paper is concerned with the applica-
tion of a recently introduced covariance-based method [3]
to the problem of estimating the fundamental matrix (see
also [1, 4–10]). However, we assume here that, as is often
the case, covariance information is unavailable.

A 3D point in a scene perspectively projected onto the
image plane of a camera gives rise to an image point rep-
resented by a pair (m1,m2) of coordinates, or equivalently,
by the vector m = [m1,m2, 1]T . A 3D point projected
onto the image planes of two cameras endowed with sepa-
rate coordinate systems gives rise to a pair of corresponding
points. When represented by (m,m′), this pair satisfies the
epipolar equation

m′TFm = 0, (1)

where F = [fij ] is a 3×3 fundamental matrix that incorpo-
rates information about the relative orientation and internal
geometry of the cameras [11]. The matrix F is subject to
the rank-2 constraint detF = 0.

If we let

θ = [f11, f12, f13, f21, f22, f23, f31, f32, f33]T

be the vector of parameters, x = [m1,m2,m
′
1,m

′
2]T be the

vector of variables, and

u(x) = [m1m
′
1,m2m

′
1,m

′
1,m1m

′
2,m2m

′
2,m

′
2,

m1,m2, 1]T

be the vector of transformed variables, then (1) can be
rewritten as θTu(x) = 0. It is this latter form of the epipo-
lar equation that we exploit to design a fast, accurate method
for estimating the fundamental matrix given a set of corre-
sponding points. In fashioning the technique, we shall not
be concerned with the issues of robustness and parameter-
isation. Accordingly, the performance of the new method
will be gauged in isolation.

2. COST FUNCTIONS AND ESTIMATES

Estimating the fundamental matrix will rest upon the use
of cost functions measuring the extent to which the data
and candidate estimates fail to satisfy the epipolar equa-
tion. If—for simplicity—the rank-2 constraint is set aside,
then, given a set of data {x1, . . . ,xn} and a cost function
J = J(θ;x1, . . . ,xn), a corresponding estimate θ̂ is de-
fined as the parameter which minimises J :

J(θ̂) = min
θ 6=0

J(θ;x1, . . . ,xn). (2)

Since (1) does not change if θ is multiplied by a non-
zero scalar, we consider only cost functions satisfying
J(tθ;x1, . . . ,xn) = J(θ;x1, . . . ,xn) for any non-zero
scalar t. For such functions, θ̂ satisfies (2) alongside tθ̂
for any non-zero scalar t, and so the corresponding estimate
is defined only to within a scalar factor.

2.1. Algebraic least squares estimator

A straightforward estimator is derived from the cost func-
tion

JALS(θ;x1, . . . ,xn) = ‖θ‖−2
n∑

i=1

θTAiθ,



where Ai = u(xi)u(xi)
T . Here each summand θTAiθ

is the square of the algebraic distance |θTu(xi)|. When
the individual datum xi is represented by (mi,m

′
i), the al-

gebraic distance between the datum and a candidate funda-
mental matrix F can be written as |m′iTFmi|. The num-
ber JAML(θ;x1, . . . ,xn) measures the degree to which the
ray {tθ : t a non-zero scalar} of equivalent candidate pa-
rameters fits the data. The value of θ for which JALS is
minimal is termed the algebraic least squares (ALS) esti-
mate and is denoted θ̂ALS. It is uniquely determined, up
to a scalar factor, by an eigenvector of

∑n
i=1Ai associ-

ated with the smallest eigenvalue, and can be found in prac-
tice by performing singular-value decomposition (SVD) of
[u(x1), . . . ,u(xn)].

3. APPROXIMATED MAXIMUM LIKELIHOOD
ESTIMATOR

Adopting a maximum likelihood approach and making
some necessary concessions to tractability, a strong case
may be mounted for adoption of the cost function given by

JAML(θ;x1, . . . ,xn) =
n∑

i=1

θTAiθ

θTBiθ
,

whereBi = ∂xu(xi)∂xu(xi)
T and

∂xu(x)
T

= [(∂uj/∂xi)(x)]1≤i≤4, 1≤j≤9

=




m′1 0 0 m′2 0 0 1 0 0
0 m′1 0 0 m′2 0 0 1 0
m1 m2 1 0 0 0 0 0 0
0 0 0 m1 m2 1 0 0 0




(see [3, 12]). The JAML-based estimate of θ will be called
the approximated maximum likelihood (AML) estimate and
will be denoted θ̂AML.

With the parameters to be estimated in matrix rather
than vector form, the function JAML underlying fundamen-
tal matrix estimation reduces to

J(F ) =

n∑

i=1

(m′i
TFmi)

2

mi
TFI∗F Tmi +m′i

TF T I∗Fm′i
,

where I∗ = diag(1, 1, 0).

3.1. Fundamental numerical scheme

Following previous work in a general setting [3], we now
develop a method to calculate θ̂AML. As a minimiser of
JAML, θ̂AML satisfies

[∂θJAML(θ;x1, . . . ,xn)]θ=θ̂AML
= 0T ,

where ∂θJAML denotes the row vector of the partial deriva-
tives of JAML with respect to θ. We term this the varia-
tional equation. Direct computation shows that

[∂θJAML(θ;x1, . . . ,xn)]T = 2Xθθ, (3)

whereXθ is the 9× 9 symmetric matrix

Xθ =

n∑

i=1

Ai

θTBiθ
−

n∑

i=1

θTAiθ

(θTBiθ)2
Bi.

Thus the variational equation can be rephrased as

[Xθθ]θ=θ̂AML
= 0. (4)

Closed-form solutions of the variational equation may
be infeasible, so in practice θ̂AML has to be found numeri-
cally. Throughout we shall assume that θ̂AML lies close to
θ̂ALS. This assumption is meant to increase the chances that
any candidate minimiser obtained via a numerical method
seeded with θ̂ALS coincides with θ̂AML.

A vector θ satisfies (4) if and only if it falls into the null
space of the matrix Xθ . Thus, if θk−1 is a tentative guess,
then an improved guess can be obtained by picking a vec-
tor θk from that eigenspace of Xθk−1

which most closely
approximates the null space of Xθ; this eigenspace is, of
course, the one corresponding to the eigenvalue closest to
zero. The fundamental numerical scheme implementing this
idea is presented in Figure 1. The algorithm can be regarded
as a variant of the Newton-Raphson method (see [3]).

1. Set θ0 = θ̂ALS.

2. Assuming that θk−1 is known, compute the
matrixXθk−1

.

3. Compute a normalised eigenvector of Xθk−1

corresponding to the eigenvalue closest to zero
and take this eigenvector for θk.

4. If θk is sufficiently close to θk−1, then termi-
nate the procedure; otherwise increment k and
return to Step 2.

Fig. 1. Fundamental numerical scheme.

4. EXPERIMENTS

The fundamental numerical scheme (FNS) was tested
against the algebraic least squares estimator (ALS) and a
Levenberg-Marquardt minimiser (LM).
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Fig. 2. Fundamental matrix estimation errors vs. average
noise level.

FNS was implemented using the EISPACK routine RS
for computation of eigenvalues and associated eigenvec-
tors of symmetric matrices. The ALS method uses the
LINPACK routine DSVDC to perform SVD. For the LM
scheme, the MINPACK routine LMDER was used to di-
rectly minimise JAML, with the analytical derivatives of
JAML, as in (3), supplied so as to improve the execution
time.

Our experiments proceeded as follows. A realistic
stereo camera configuration was first selected with non co-
planar optical axes, and slightly differing left and right cam-
era intrinsic parameters. 3D points were then projected onto
the images so as to generate many pairs of corresponding
points. A range of tests was then conducted, each carried
out with respect to an average level of noise, σ.
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Fig. 3. Timing results for various methods.

For a given test, each image point was perturbed by
adding zero-mean Gaussian noise of standard deviation σ

independently to each of the two coordinates. Each method
was then supplied with these noisy matching points and
challenged to compute the fundamental matrix.

For each σ, the fundamental matrix was computed 50
times from a specific set of 96 corresponding points, with
new perturbations being added each time. For each funda-
mental matrix obtained, an error measure was computed as
the sum of the distances of the underlying true points to the
epipolar lines derived from the estimated fundamental ma-
trix, in both the left and right images. A composite error
measure was then obtained by averaging this error over all
50 trials. This entire process was repeated for different av-
erage levels of noise (with σ varying from 0.25 to 3 pixels
in steps of 0.25).

Fig. 4. Images used in the reconstructions.

Figure 2 shows the average epipolar-distance pixel er-
rors obtained for each method. The tests reveal that LM
and FNS perform identically. In our experiments, therefore,
FNS succeeded in minimising JAML as well as LM did. In
contrast, ALS is seen to be far less successful.

Timing tests were conducted on the various schemes.
Stopping conditions were devised so as to place similar
demands upon the iterative methods, FNS and LM. None
of the schemes’ timings were affected significantly by a
change in noise level. Figure 3 shows histogram timing data
for the methods. In each case, the bar denotes the time taken
to complete a single test, averaged over the complete suite
of experiments.

Finally, an indicative reconstruction test was carried out.
Corresponding points were extracted from a stereo image
pair of a calibration book opened at 90 deg (see Figure 4).
These points were fed to the ALS and FNS estimators and
the associated fundamental matrices were computed. A
self-calibration procedure was then used to determine the
relative orientation of the cameras, with the camera intrin-
sics having been pre-calibrated in the laboratory. Figures 5
and 6 show various views of the calibration book. The FNS
reconstruction exhibits better depth estimates, with, for ex-
ample, a far more accurate angle of opening of the calibra-
tion book.



Fig. 5. Reconstructions of the noisy points using ALS.

Fig. 6. Reconstructions of the noisy points using FNS.
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[1] M. Mühlich and R. Mester, “The role of total least squares in
motion analysis,” in Proc. 5th European Conference on Com-
puter Vision, Freiburg, Germany. 1998, vol. 1407 of Lecture
Notes in Computer Science, pp. 305–321, Springer-Verlag,
Berlin.

[2] B. Triggs, “Optimal estimation of matching constraints,”
in 3D Structure from Multiple Images of Large-Scale En-
vironments, European Workshop, Freiburg, Germany. 1998,
vol. 1506 of Lecture Notes in Computer Science, pp. 63–77,
Springer-Verlag, Berlin.

[3] W. Chojnacki, M. J. Brooks, A. van den Hengel, and D. Gaw-
ley, “On the fitting of surfaces to data with covariances,”
IEEE Trans. Pattern Analysis & Machine Intelligence, vol.
22, no. 11, pp. 1294–1303, 2000.

[4] R. Hartley, “In defense of the eight-point algorithm,” IEEE
Trans. Pattern Analysis & Machine Intelligence, vol. 19, no.
6, pp. 580–593, 1997.

[5] Y. Leedan and P. Meer, “Heteroscedastic regression in com-
puter vision: problems with bilinear constraint,” Int. J. Com-
puter Vision, vol. 37, no. 2, pp. 127–150, 2000.

[6] Q.-T. Luong and O. D. Faugeras, “The fundamental matrix:
theory, algorithms, and stability analysis,” Int. J. Computer
Vision, vol. 17, no. 1, pp. 43–75, 1996.

[7] K. Kanatani, “Unbiased estimation and statistical analysis
of 3-D rigid motion from two views,” IEEE Trans. Pattern
Analysis & Machine Intelligence, vol. 15, no. 1, pp. 37–50,
1993.

[8] P. H. S. Torr and D. W. Murray, “The development and com-
parison of robust methods for estimating the fundamental
matrix,” Int. J. Computer Vision, vol. 24, no. 3, pp. 271–300,
1997.

[9] Z. Zhang, “Determining the epipolar geometry and its uncer-
tainty: a review,” Int. J. Computer Vision, vol. 27, no. 2, pp.
161–195, 1998.

[10] Z. Zhang, “On the optimization criteria used in two-view
motion analysis,” IEEE Trans. Pattern Analysis & Machine
Intelligence, vol. 20, no. 7, pp. 717–729, 1998.

[11] O. D. Faugeras, Three-Dimensional Computer Vision: A Ge-
ometric Viewpoint, The MIT Press, Cambridge, Mass., 1993.

[12] K. Kanatani, Statistical Optimization for Geometric Compu-
tation: Theory and Practice, Elsevier, Amsterdam, 1996.


