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1. Introduction

LET D be a domain in CN and q> a holomorphic automorphism of D. Let
* be the measure class of the Lebesgue measure in D, i.e., the set of all
positive regular Borel measures on D whose null sets coincide with the
Lebesgue null sets. Let qo, be the automorphism of <€ given by

\ Oi e % B e

where 98(D) denotes the Borel a-algebra of D. Adopting the terminology
introduced in [2], we will say that <p» is finite if it has a fixed point among
probability measures.

Let L2H(D) be the Hilbert space of all square Lebesgue integrable
holomorphic functions on D. Suppose that L2H{D) # {0}. Let Uv be the
unitary operator in L2H(D) defined by

<JeL2H(D)),

where

The purpose of this paper is to exhibit various relations between <p,
<p», and Up. A fundamental result is that Uv has either pure point
spectrum or purely continuous spectrum, the first case occurring exactly
when (p» is finite. We prove that any of the following two conditions
ensures the finiteness of <p»: 1° the existence of a (^-invariant probability
measure absolutely continuous with respect to Lebesgue measure; 2° the
existence of a relatively compact orbit of (p. Of course, the first condition
is also necessary. We show the necessity of a stronger version of the
second condition (embeddability of cp in a compact transformation group)
provided some mild restrictions on D are imposed. Assuming some
hypotheses on D, we prove also that if a point in D is wandering, then Uv

has purely absolutely continuous spectrum, and, conversely, if (/,, has a
non-zero absolutely continuous component in the spectrum, then all
points in D are wandering. In particular, the spectrum of Uv is either
pure point, or purely absolutely continuous, or purely singular con-
tinuous. We show that if D is in a class of domains containing among
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others all bounded analytic polyhedra, then the spectrum of Uv cannot be
purely singular continuous.

2. A purity theorem

The starting point of our discussion is the following.

THEOREM 1.1. Suppose there exists a (p-invariant probability measure
P that is absolutely continuous with respect to Lebesgue measure. Then Uv

has pure point spectrum.

Proof. Given k e Z and a bounded Borel measure n on the unit circle
T, let fX(k) be the &th Fourier coefficient of /i, i.e.,

By the spectral theorem for unitary operators, there is a unique
projection-valued measure P on T, taking values in a Boolean algebra of
projections in L2H(D), such that for each k eZ,

J , (1.1)
T

where the integral is to be interpreted in the sense of strong convergence.
For any f,ge L2H(D), let nfg be the complex measure on T such that

nf,s{B) = {P{B)f,g) (Be «(!)),

where (•, •) stands for the scalar product in L2H(D). Given k e N, let

cp~k = q>~1 o . . . o (p~l,

k times k times

and let q>° stand for the identity map of D. Since (/* = U^* for each
k € I, it follows from (1.1) that

(Uv*f,g) = &f.8(-k). (1.2)
Let

L2H(D) = HPP@HC

be the orthogonal decomposition of L2H{D) in which Hpp is the closure
of the linear span of the eigenvectors of Uv, and Hc consists of those
/ e L2H(D) for which nfj is a continuous measure. As is known, the
decomposition reduces P.

Suppose that the spectrum of Uv is not pure point, that is, there exists
a non-zero / in Hc. Let g be any element of L2H(D) with the
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decomposition g=g'+g" with respect to Hpp and Hc. Clearly, nftt =
^f,g-- Since

3
nf.g- = i 2 '*;r/+<V./+'V> (I-3)

the measure jr /g is continuous. By a theorem of Wiener (cf. [14], p. 108),

^ £ 2 = 2 l*/.,«'})l2 = 0.

(1.4)

Thus in view of (1.2)

n—»°° Z/I T 1 j t - -n

Let {cpn: n e IVJ} be any complete orthonormal set in L2H(D). The
function

, W) = 2 <Pn(*)<Pn(>v) (^, ^ 6 D), (1.5)
n - 1

called the Bergman function of D, does not depend on the particular
choice of {<?„: neN) (cf. [1], p. 21). For each zeD, let %z be the
element of L2H(D) such that

Xz(w) = KD(W,z) (weD). (1.6)

A fundamental property of KD is that, given / e L2H{D) and z e £>,

/(z) = (/,Zz). (1-7)

Let K be a compact subset of D such that P(K) > 0. It is well known
that

H: zeK}^n-™dist(K,9D)-\ (1.8)

where ||-|| stands for the norm in L2H(D) and the distance dist (K, 3D)
between K and the boundary 3D of D refers to the supremum norm in
C*. From this estimate it follows that the restrictions to K of the
functions

are uniformly bounded. On account of (1.4), we find that

Umr-^-r £ f |(l/^/, Xz)|2dA(2) = 0, (1.9)
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where A stands for the Lebesgue measure in D. By (1.7) for each keZ,

/l(t/W^z)|2dA(z)=J|(/o«p*)y^dA= J |/|2dA, (1.10)

so if we denote by 1B the characteristic function of a subset B of D, then
(1.9) can be rewritten in the form

j
A s / ^ O A-a.e., the last identity and Fatou's lemma imply

liminf
iminf—^— £ V w = 0 A-a.e. (1.11)
n—»«> Z/I + 1 ka—n

Let 3K be the a-algebra {B e 98(D): 1B = lvW P-a.e.} and EK be the
corresponding conditional expectation operator. By Birkhoffs ergodic
theorem (cf. [11], p. 25),

^ £ P-a.e.

Comparing this equality with (1.11) and taking into account that P is
absolutely continuous with respect to A, we find that

(Ar) = 0 P-a.e.

Hence

a contradiction.
The proof is complete.

THEOREM 1.2. / / Uv has a non-zero eigenvector, then q>m is finite.

Proof. Let h be an eigenvector of Uv of unit norm. Setting

= j|/i|2dA (fl

defines a (p-invariant probability measure on D. Since /i^O A-a.e., it
follows that P e « .

The proof is complete.

As a corollary to Theorems 1.1 and 1.2, we obtain the following
generalization of a result of [8].

THEOREM 1.3. The spectrum of Uv is either pure point or purely
continuous according as <p» is finite or not.
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We close this section with two simple examples.

EXAMPLE 1.4. Let D be an open ball in C" centered at 0 and let q> be
defined as

<p{zu . . . , z N ) = ( e ' e ' z 1 ; . . . , e e » z N ) ( z u . . . , z N e C ) ,

where 61, . . . , 6Ne U. Then the normalized Lebesgue measure in D is
<p-invariant, and so, by Theorem 1.3, £/,, has pure point spectrum.

EXAMPLE 1.5. Let D = {(zu . . . , zN)eCN: Im zx > 0, . . . , Im zN > 0}
and let q> be defined as

<p(zx, . .. , z N ) = (zl + tl, . .. ,zN + tN) ( z u . . . , z N e C ) ,

where (tlt ... ,tn)e U"\{(0, ..., 0)}. Let U be an open ball in CN with
sufficiently small radius so that <pm(U) n <p"(l/) = 0 for any distinct
integers m and n. Suppose that there exists a (^-invariant probability
measure P e ^ . If jV is any finite subset of Z with cardinality n, then

n-P(U)= 2 P(<pm(t/)) = P ( U <p
meJf \me/r

Hence P((/) = 0, which is incompatible with P e <€. Therefore <p» is not
finite, and consequently, by Theorem 1.3, Uv has purely continuous
spectrum.

2. Pure point spectrum
For each w e D, let O(w) denote the orbit {q>k(w): k e Z} of w.
The following theorem generalizes some results of [8, 9, 10].

THEOREM 2.1. Suppose that there exists w e D such that the closure of
G(w) in D is compact. Then Uv has pure point spectrum.

Proof. Given a multiindex a = (au .. . , aN)e(NU {0})", let \a\ =
<*! + ••• + aN, and, given t e D, let d"x, or d^...^Xi denote the function

It is easily seen that for each a e (N U {0})" and each zeD, d"xz is in
L2H(D) and

Since L2H(D) # {0}, it follows immediately from the last equality that
for each z eD there is a multiindex a such that d"xz ^ 0-
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Let or be a multiindex such that 9aXw^0 and 9pXw = 0 for every
multiindex /3 with |/3| < \a\. Then

dm, dm, dw,

where the sum extends over all multiindices (iu ... , il<r|) with lss/jss
N, . . . , 1 s£ j | t t | =s N. A similiar formula is valid with <p replaced by
<p* (A: eZ\{0}), cr replaced by y such that |y| = \a\, and >v replaced by
z in C(HO. In particular, it follows from that formula that the dimension
d(z) of the linear span Hz of {dYxz- W\ = \a\) takes on a constant value d
for z e 0(w). Obviously, d(z) « d for all z in the closure 0(>v) of 0(>v) in
D, and, since C(z) = G(w) for each z e C{w), we actually have d(z) = d
for all z e 0(w). Now it is clear that z—* Hz is a continuous mapping from
^ w ) into the Grassmannian of <i-dimensional linear subspaces of
L2H(D), and that the image of C(w) by that mapping is compact. Since,
for each k eZ, Utpt{daXw) is an element of Hv-k^w) of norm HS^M-II. it
follows that the closure of {Uvk{d"xw): keZ) is compact. Let H be the
closure of the linear span of {Uvk(d"xw): keZ}. H is a reducing
subspace for Uv and, by Weyl's theorem (cf. [7], p. 456), the unitary
representation A:—• Uvk | H of Z in H is a direct sum of finite dimensional
unitary representations (here £/,,* | / / stands for the restriction of U^ to
H). Since a unitary operator in a finite dimensional complex Hilbert
space has pure point spectrum, it follows that Uv has an eigenvector. By
Theorem 1.3, Uv actually has pure point spectrum.

The proof is complete.

3. Property (A)

We shall say that (D, <p) has property (A) if for each w e D, there exist
relatively compact open neighbourhoods U and V of w in D such that if
U n q>n(U)±0 for some neZ, then <p"(U) <= V.

THEOREM 3.1. Suppose that D is a domain in C and that £/,, has pure
point spectrum. Then (D, q>) has property (A).

Proof. Since L2H{D) ± {0}, it follows from a result of Wiegerinck [13]
that L2H(D) is in fact infinite dimensional. In particular, there exist two
linearly independent eigenvectors hu h2 of Uv. Let w be a point in D.
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Clearly, at least one of the meromorphic functions hjh2 and h2/hu say
hi/h2, is holomorphic at w. Let D' denote D with the poles of hjh2

deleted. For any 6 > 0, let

W6 = {z e D': \h,{z)lh2{z) - h,(w)/h2(w)\ < 6},

and let V6 be the (open) component of W6 containing w. As is well
known (cf. [4] p. 10), there exist k e N, an open neighbourhood Q' <= D'
of w, an open neighbourhood A of 0, and one-to-one holomorphic
functions gx: Q'—* A and g2: A—* A such that

fc1(z)M2(z) - hx{w)lh2(w) =

for each ze f l ' . It follows from this representation that there exists 6 > 0
such that the closure of V36 in D is compact. The proof will be complete
once we show that if V6 n <p"(Va) =£0 for some n e Z , then <p"(V )̂ <= VM.

Suppose that q)n(z1) = z2 for zllz2eV6 and n e Z . Then, for each
zeV6,

\h,{cP»(z))/h2(<p''(z)) - h^/h^w)]

^ \hx(<p\z))lh2(<pn{z)) - h1{q>"(zl))/h2((P''(z1))\

+ \h1(z2)/h2(z2)-h1(w)/h2(w)\

= \h^z)lh2{z) - hfayhifr)] + \hx{z2)lh2{z2) - hx{w)lh2(w)\ < 36.

Thus (pn(V6) c= Wj,,. Since ^"(V^) is connected and intersects Vs c V^, it
follows that <pn(Va) c V^.

The proof is complete.

We shall say that a domain Q in CN has property si if, for each w e Q,
%w ^ 0 and there is 1 «£ i *s N such that d^w and %w are linearly
independent.

THEOREM 3.2. Suppose that D has property si and that (/,, has pure
point spectrum. Then (D, q>) has property (A).

Proof. Let w be a point in D. As ^ # 0 , formulae (1.5) and (1.6)
applied to a complete orthonormal set in L2H(D) consisting of eigenvec-
tors of Uy show that h(w)=tO for some eigenvector h of L^. Let D'
denote D with the zeros of h deleted. For any 6 > 0, let

and let Vs be the component of W6 containing w. Since for some
1 as i s= N, 3ii%w and Xw are linearly independent, an open neighbourhood
of w can be diffeomorphically embedded in L2H(D) by the map
z—*{h{z))~iXz- Accordingly, we can find <5 > 0 such that the closure of
VM in D is compact. The proof will be complete once we show that if
Vs D q>"(y6) # 0 for some neZ, then q>"(V6) c VM.
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Suppose that q>n(zl) = z2 for zltzieV6 and n e Z . Then, for each
zeV6,

Thus <pn(ys) c Wj,,. Since q>"(Va) is connected and intersects V6 cz V^, it
follows that p"(V,)cKM .

The proof is complete.

We shall say that a domain QinCN has property 98 if, for each w eQ,
Xw^Q (or> equivalently, AQ(H<, W) > 0) and the Bergman metric tensor

N £2
ga(w) = 2 T - ^ T log Ka{w, w) dzt dzt

/,/—i oZi aZj

is positive-definite. As is known (cf. [5], p. 296), every domain in C"
which is biholomorphically equivalent to a bounded domain has property
93.

If a domain Q in C" has property 98, then it has also property si. In
fact, if ditXw - <*jXw for w e Q and oy e C (1 =sy ss N), then

and, for 1

— A"Q(>v, W) = ctjKoiw, w)
dZ

d2 9
—^ Ka{yv, w) = a,— KQ(w, w)

whence

Zj aZj

d d
-log KQ(w, W) = -KQ\W, W) • — A-O(>v( w) • — Ka(w, w)

Z dZ aZ
d2

+ KQ\W, W) • —-— Ka{w, w) = 0.
aZ aZ

THEOREM 3.3. Suppose that D has property 98. Then (D, q>) has
property (A).

Proof. Let dD be the geodesic distance relative to gD. Let ivbea point
in D. For each 6 >0, let BD(w, 8) denote the open ball relative to dD

centered at w with radius 6. It is an elementary result from differential
geometry that there is 6 > 0 such that the closure of BD(w, 36) in D is
compact. To end the proof, it suffices to show that if

<pn(BD(w, 6))nBD(w,6)*0
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for some n eZ, then

<p"(BD(w, 6))czBD(w,36).

Suppose that (p"(z1) = z2 for z1; z2e BD(w, 6) and n e Z . As is well
known (cf. [5], p. 299), qp is an isometry with respect to dD. Therefore,
for each z e BD(w, 5),

dD(cpn(z), w)^dD(<pn(z), q>n(zl)) + dD(z2, w)

= dD(z,zl) + dD(z2,w)<36,

which yields the desired conclusion.

4. Pure point spectrum (continued)

Let 2C(D) be the space of all holomorphic mappings of D into itself
equipped with the compact open topology. With composition as semi-
group operation, 9?(D) is a topological semigroup. The identity mapping
is the identity of %(D).

THEOREM 4.1. Suppose that (D, <p) has property (A) and that £/,, has
pure point spectrum. Then the closure of {q>k: JfceZ} in 2((D) is a
compact topological group.

Proof. We first show that if the closure G of {<pk: keZ} in 9*f(D) is
compact, then it is a topological group. It is clear that G is a topological
semigroup. Let tp be an element of G. Since the topology of 3?(D) is
metrisable, there exists a sequence (itn)neN in Z such that r/> = lim q>k\

n—•<=

By the compactness of G, there is a subsequence (knJmeN of (/cn)neN

such that the sequence (<p~*"-)meN converges to an element of G. Of
course, lim <p~*"-= \p~l. Thus G is a group. Since G is a compact group

which is a topological semigroup, it follows from a theorem of Ellis [3]
that G is a topological group.

Suppose now that G is not compact. Then, by Montel's theorem, there
exists z e D such that for each open neighbourhood Q of z, the closure of
(J <p*(fi) in D is not compact. Let U and V be relatively compact
ktZ
neighbourhoods of z in D such that if t / n (p"((/)=£0 for some neZ,
then <pn(U) c V. An easy exhaustion argument shows the existence of a
maximal subset M of Z such that (pm(U) D <p"(U) = 0 for any distinct m
and n in M. We claim that Ji is infinite.

In fact, given it e Z, choose meM, so that (pm(U) n <pk(U) =£0. Then
Un<t>k-m(U)*0 whence (pk~m(U)<zV and further cpk(U) c <pm(V).
Consequently,

U <Pk(U) c U <Pm(v)
keZ meM
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and as the closure of U <p*([/) in D is not compact, Ji must be infinite,
as claimed. *£Z

Applying now an argument from Example 1.5, we see that (p» is not
finite. Hence, in view of Theorem 1.3, the spectrum of Uv cannot be pure
point. This contradiction completes the proof.

As a corollary to Theorems 3.1, 3.2, and 4.1, we obtain

THEOREM 4.2. Let D be either a domain in Cor a domain in CN (N 5* 2)
having property si. Assume that Uv has pure point spectrum. Then the
closure of {q>k: keZ} in %(D) is a compact topological group.

Theorem 4.2 generalizes some results of [8, 9]. The proofs to the
theorems of which Theorem 4.2 is a consequence rely on a modification
of an argument due to T. Mazur [9]. Mazur's original argument used
differential geometry and involved an assumption on D stronger than
property 98, namely, property <S which will be introduced below.

As a consequence of Theorems 1.3, 2.1, and 4.1, we obtain

THEOREM 4.3. Suppose that (D, q>) has property (A). / / the orbit of
some point in D has compact closure in D, then the orbits of all points in
D have compact closure in D.

The above theorem fails if all the assumptions about D and q> are
dropped. This is shown by the following

EXAMPLE 4.4. Let D = C2 and let q> be defined as

(P(zi,z2) = (zi,z1 + z2) (zi,z2eC).

Then all elements of {0} x C are fixed points for q>, and for each
w e C\({0} x C), the closure of C(a>) is not compact.

5. Absolutely continuous spectrum

We shall say that a point w in D is wandering if there exists an open
neighbourhood U of w such that U(lqp"(U) = 0 for each n e l\J. Of
course, we may equally well assume in this definition that U n <p"(U) = 0
holds for aUneZ\{0}.

Suppose that w e D is not wandering, and let U be an open
neighbourhood of w. Then, U n q>"(U) =/= 0 for infinitely many neN. In
fact, if there is noeN such that Un q>n(U) = 0 for n^n0, then
w#<pn(w) for n^n0 and hence for all A E M . NOW, if V is an open
neighbourhood of w contained in U such that V (l<p"(V) = 0 for
1 as n as n0, then, clearly, V D qp"(V) = 0 for all n e N, a contradiction.

Let
He = Hoc © H,c
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be the orthogonal decomposition of Hc in which H^ consists of those
/ e Hc for which the measure nff is absolutely continuous with respect to
the Lebesgue measure in T, and HJC consists of those f eHc for which the
measure nfj is singular with respect to the Lebesgue measure in T. As is
known, the decomposition reduces the projection-valued measure P.

THEOREM 5.1. Suppose that a point w in D is wandering. Then Xw e H^.

Proof. Let U be an open neighbourhood of w such that U n <p"(t/) =
0 for all neZ\{0} . Then, clearly, 0m((/)n<p"([/) = 0 for distinct rn
and n in Z.

By (1.10) and Levi's monotone convergence theorem,

f 2 I(IV*,, Xz)\2 dA(z) = 2 f \XM)\2 dA(z) * HzJI2.

This jointly with (1.2) and Plancherel's theorem shows that for A-almost
all z in U, the measure nXwiXz is absolutely continuous with respect to the
Lebesgue measure in T. Since the mapping D 3z^*Xz eL2H(D) is
continuous, it follows that for all z in U, the measure nXwtXz is absolutely
continuous with respect to the Lebesgue measure in T. In particular, this
is the case of nx<^Xw.

The proof is complete.

THEOREM 5.2. / / there is a wandering point in D, then H^ =£ {0}.

Proof. The set W of wandering points in D is clearly open. If W # 0 ,
then, in view of (1.6), there exists weW such that Xw^O. Now the
theorem follows upon applying Theorem 5.1.

THEOREM 5.3. Suppose that (D, <p) has property (A) and H^. #{0}.
Then every point in D is wandering.

Proof. Suppose that / e / / ^ { O } . Let w be a point in D. Let U and V
be open neighbourhoods of w with compact closure in D such that if
Un<pn(U)*0 for some neZ, then <p"(U)czV. Given zeV, let
Xz = Sz + gl be the decomposition of Xz with respect to Hpp © //„ and
Hoc. Clearly, nf%Xi = nfgs. Hence, in view of (1.3), the measure JtfXi is
absolutely continuous with respect to the Lebesgue measure in T. By
(1.2) and the Riemann-Lebesgue lemma,

OV/,*,) = 0. (5.1)

In view of (1.8), the restrictions to V of the functions z-^^U^f, Xz)
(keZ) are uniformly bounded. Applying Lebesgue's dominated conver-
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gence theorem and taking into account (1.10) and (5.1), we get

Urn I | / |2dA= lim f |(l/ */, *z)|
2dA = 0. (5.2)

Suppose that w is not wandering. Then there exists a sequence (kn)neN

of positive integers such that limJtn = +«> and U H q>k"(U)j=0 for each

neN. It is clear that given n e N , we have q>k"(U)czV. Hence f/c
* and further

|/|2dA.
u

The last inequality together with (5.2) yields

|/|2dA = 0.
V

Since/^O A-a.e. and A(C/)>0, we get a contradiction.
The proof is complete.

THEOREM 5.4. Suppose that (D, <p) has property (A) and that Uv has a
non-zero absolutely continuous component in the spectrum. Then the
spectrum of Uv is purely absolutely continuous.

Proof. Suppose that H^. # {0}. Then, by Theorem 5.3, every point in
D is wandering, and, by Theorem 5.1, %w e H^ for each w e D. In view of
(1.7), the Hahn-Banach theorem, and the Riesz theorem, the linear span
°f {Xw- weD} is dense in L2H(D). Therefore Hx coincides with
L2H(D).

The proof is complete.

As a consequence of Theorems 5.2, 5.3, and 5.4, we obtain

THEOREM 5.5. Suppose that (D, q>) has property (A). If some point in
D is wandering, then all points in D are so.

Notice that the above theorem fails if all the assumptions about D and
(p are dropped. In fact, if D and q> are as in Example 4.4, then the set of
wandering points in D coincides with C2\({0} x C).

We shall say that a domain Q has property ^ if it has property 38 and is
complete with respect to the geodesic distance dQ. As is known (cf. [6]),
every domain in C^ which is biholomorphically equivalent to a bounded
analytic polyhedron has property c€.

THEOREM 5.6. Suppose that D has property <€. Then the spectrum of U9

is either pure point or purely absolutely continuous.



ON SOME HOLOMORPHIC DYNAMICAL SYSTEMS 171

Proof. Let §(D) be the group of all holomorphic automorphisms of
D, the group operation being composition of mappings. Since D has
property <<? and in particular has property 9B, it follows that under the
compact open topology, §(D) is a Lie group (cf. [5], p. 300). Let G be
the closure of {q>": neZ} in $(D). Clearly, G is a locally compact
monothetic group. Therefore, either G is compact or G = {q>n: neZ}
and Z9n-*<p"eGisa topological isomorphism of Z and G (cf. [12], p.
39). In the first case, by virtue of Theorem 2.1, Uv has pure point
spectrum. In the other case, it turns out that Uv has purely absolutely
continuous spectrum.

Indeed, suppose that {<p": neZ} is topologically isomorphic to Z. If
the spectrum of U^ is not purely absolutely continuous, then, by
Theorems 5.2 and 5.4, no point in D is wandering. Fix w e D. Since D is
complete with respect to dD, it follows from the Hopf-Rinov theorem
(cf. [5], p. 56) that for each 6>0, the closure of BD(w, 6) in D is
compact. Choose any <50>0. Since w is not wandering, there is an
unbounded sequence {kn)neN of positive integers such that

for each n e N . Consequently, for each 6 > 80 and each nePy,

BD{w, 6)nq>k"(BD(w,6))±0

whence, as in the proof of Theorem 3.3,

<p*"(flD(>v, <5)) a BD(w, 2,6).

By Montel's theorem and the fact that each compact subset of D is
contained in some BD{w, 6) (6 2* 80), we conclude that the closure of
{4>km: nelVJ} in £>(£>) is compact. Since {4>n: neZ} is topologically
isomorphic to Z, this cannot be the case unless (kn)neN is bounded. This
contradiction completes the proof.

We conclude with a simple application of the theorem established. Let
D and cp be as in Example 1.5. Then, clearly, D is biholomorphically
equivalent to a polydisc which, being a bounded analytic polyhedron, has
property C. Since U^ has purely continuous spectrum, it follows from
Theorem 5.6 that the spectrum of (/,, is in fact purely absolutely
continuous.

Acknowledgement
The author would like to thank Professor T. Mazur for a stimulating
discussion during the IX Conference on Analytic Functions, 1-8 June
1986, Lublin, Poland. The present note was written while the author was
staying at McMaster University, Hamilton, Ontario, Canada. The author



172 WOJCIECH CHOJNACKI

would like to thank Professor H. Heining for making the stay possible
and for warm hospitality.

REFERENCES

1. S. Bergman, The Kernel Function and Conformal Mapping', Math. Surveys no 5,
Amer. Math. Soc. 1970.

2. Dang-Ngoc-Nghiem, 'On the classification of dynamical systems', Ann. Inst. H.
Poincarf Sect. B (N.S.) 9 (1973), 397-425.

3. R. Ellis, 'Locally compact transformation groups', Duke Math. J. 24 (1957), 119-126.
4. O. Forster, Lectures on Riemann Surfaces, Springer, New York, 1981.
5. S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York,

1962.
6. S. Kobayashi, 'Geometry of bounded domains', Trans. Amer. Math. Soc. 92 (1959),

267-290.
7. K. Maurin, Methods of Hilbert Spaces, Polish Scientific Publishers, Warszawa, 1972.
8. T. Mazur, 'Spectral properties of automorphisms of the unit disc, Demonstratio Math.

17 (1984), 1069-1072.
9. T. Mazur, 'Canonical isometry on weighted Bergman spaces', Pacific J. Math, (to

appear).
10. T. Mazur and M. Skwarczyfiski, •Spectral properties of holomorphic automorphism

with fixed point', Glasgow Math. J. 28 (1986), 25-30.
11. W. Parry, Topics in Ergodic Theory, Cambridge University Press, Cambridge, 1981.
12. W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962.
13. J. J. O. O. Wiegerinck, 'Domains with finite dimensional Bergman space', Math. Z.

187 (1984), 559-562.
14. A. Zygraund, Trigonometric Series, Vol. I, Cambridge University Press, Cambridge,

1959.

Instytut Matematyki
Uniwersytct Warszawski
Patac Kultury i Nauki, IX p.
00-901 Warszawa
Poland


