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d .
REsuME - A Popérateur Aq=i—1d_ +q, g étant une fonction réelle con-
x

tinue presque périodique dans R, on associe lopérateur fransformé de Fourier
de lopérateur analogue a A g dans le compactifié de Bour de R, et on en effectue
Panalyse spectrale. On prouve que la seule & un facteur numérigue prés fonction
propre de l'opérateur initial, correspondant & la valeur propre zéro, est presque
totalement ergodique. On donne des conditions nécessaires et suffisantes pour
que cette fonction soit totalement ergodique.

0. Introduction.

Let AP (R) (APr (R)) denote the space of all (real) continuous
almost periodic functions on R. Given geAPgr (R), define a first order
ordinary differential operator A, to be

Aju=i—‘u'+qu

for all u in the Sobolev space H; (R). Regarded as a densely defined
operator on L?(R), A, is self-adjoint. Its spectrum is the whole real

- ]
line inasmuch as for any ueR, ug, (x)= exp( if(ﬂ—q () du) (xeR)
"o

is a generalized eigenfunction of A4, with eigenvalue .
With the usual notation I (R) for the Hilbert space of all square

summable complex sequences on R, and with a(u) standing for the uth
Fourier coefficient of g, i.e.
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T
7 () = lim @)~ | g () exp (—ipx) dx  (ueR),

—-r

let A, be defined on D (A)={(@)elr R): (ua,)el> (R)} as
(A g (@))=va,+ Fi &(v—,u)aﬂ.
ue

Being the sum of the unbounded self-adjoint operator (a.) — (za,) and
of the bounded self-adjoint operator (q.) — ( = c;(.lu-—v) a), A, is
self-adjoint. That the second summand in the :gove sum is bounded
is seen as follows: Let R be the Bohr compactification of R with

probabilistic Haar measure P, and let a: R—R be the canonical
homomorphism. Given (a,)€F (R), denote by X the Fourier transform

of (a.) defined in a unique manner as an element of L? (R). Let Q be

the unique element of Cr (ﬁ) (the continuous real functions on fi)
such that Q (& (£))=q (&) for all teR. Then the inverse Fourier transform

of OX is ( = gz(pc—v) a,), and so, by Plancherel’s theorem,
veR

¢ 2 g @—w) alk=llgll- i@l

As the last passage suggests, one may think of &, as being the
Fourier transform of the operator A, «transferred» on the Bohr compacti-

fication R. A natural question arises how A, and &, are related to one
another; this is a special instance of a general problem emerging in the
study of pseudodifferential operators with almost periodic symbols
(cf. [3], [14]). A fundamental theorem of $uBIN [13] ensures that the
spectra of both these operators coincide. Deeper relationships between
Ag and o, will be revealed in the course of the present paper as we
perform a detailed spectral analysis of <, and subsequently found
thereupon a study of harmonic properties of 1y=1u4, involving Banach
means, ergodicity and related notions.

1. Spectral analysis of «{, .

1.0. Introduction.

There is a close connection between the subject matter of this sec-
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tion and the theory of invariant subspaces of L*(G), where G is a compact
Abelian group with ordered dual (cf. [7]). From the standpoint of the
latter theory, the subsequent development can be viewed as an

examination of a particular cocycle on R. Correspondingly, a consi-
derable portion of the treatment will come as no surprise to experts
in the field. Hovewer, our exposition seems to carry the results
about cocycles a little further. A new short argument is used to
identify A, with the Fourier tranform of the generator of the group
associated with a corresponding cocycle. The construction of a non-trivial
cocycle offered here, based on a careful analysis of «{,, seems to clarify
much of the existing constructions of a similar kind.

Generally, our exposition is subordinate to the discussion of A,
in its own right. Recently, there has been a great inferest in the spectral
analysis of the operators defined in various functional spaces on the
Bohr compactification of R”, associated with pseudodifferential operators
with almost periodic symbols. So far as the author is aware, A, and the
Schrodinger operator with a periodic potential are until now the only
differential operators with almost periodic coefficients, whose associated

operators on L2 (R™) allow a complete spectral description.

Anticipating the interest in the paper of experts in differential equa-
tions unfamiliar with special chapters of harmonic analysis, our style
will be largely expository with a minimal background for most of the
arguments.

1.1. Spectral resolution of A,.

On letting Ts f denote the translate of f by s, put
4
Y: (w)= exp(i /.th(u) Q (w) du)
.

for all teR and all weR.
Throughout we shall use systematically the language of probability
theory. Accordingly, (¢, w)—Y, (w) will be viewed as a stochastic pro-

cess carried by (ﬁ, P).
As casily seen, {Y.} satisfies the following conditions:

(i) {Y.} is continuous as a mapping from R into L? (R),

(i) for every teR, |Y{]=1 almost surely (almost unitarity),
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(iii) the random fields {Y...} and {Y;s Tus Y.}, with parameter
set RXR, are stochastically equivalent.

Usually, a process satisfying (i) - (iii) is called a cocycle on R.
Let Xq be the self-adjoint operator on L2 (R) that is unitarily
equivalent to s, by the Fourier tranform. Avq is the sum of the genera-

tor of the strongly continuous unitary group {Twn} on L2 (R) times i~
(the quasimomentum operator), and the bounded self-adjoint operator
of multiplication by Q. By the Trotter product formula (cf.[11], th.8.31),

iﬁ; is the generator of the strongly continuous unitary group {U.}
defined as

t n
U= lim ( Tn(i) exp( iT Q)) s

the limit being taken in the strong operator topology (here exp (% % Q)

stands for the corresponding multiplication operator). Apparently, for
any teR and neN

¢t n .1
(Ta(ﬁ)exp (l-'n— Q)) —exp(z _f’? kfl Ta('ﬁ‘:‘) Q)Ta(t) .

Moreover

lim exp(ii ) Tq(it)Q ):Yt

n-—=- oo k=1

in the sense of L? (R), the pointwise limit being evident and the equality
next following on application of Lebesque’s dominated convergence
theorem. Thus

(1.1) U:.=Y, Ta(t)-

Denote by F the projection-valued measure associated with {U,}

or, equivalently, with ff;. With respect to F, L? (ﬁ) decomposes into the
three mutually orthogonal subspaces: pure point, continuous singular
and absolutely continuous. It is a well known fact about the projection-
valued measures associated with cocycles that one of these subspaces

must be all of L? (AIi) (cf. [7], th. 14, p. 25). Below we give a simple
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proof of this assertion. One point of the proof will be relevant to the
subsequent development.

For any 7€R, let x. denote the continuous character of R such that
x= (o () =exp (izt) for all teR. Given 7€R and feL? (R), set

Vef=x:F

Then {V.} is another unitary (not sirongly continuous) group on
1* (R).
As easily seen, the families {U.} and {V.} verify the Weyl com-
mutation relation
U: V.=exp (it7) V. U, .

Using this relation, one readily finds for any z€R and any Borel subset
B of R
(1.2) FB)V.=V.FB—1)
whence
FBV:L, Ve H=FB—-D L

whenever fe L? (ﬁ) 3

By the latter formula, each of the three parts of L2 (R) relative
to F is invariant for {V.}, and as such, by a theorem of Wiener (cf.[6],

th. 7.10.1), consists of all the functions of L? (ﬁ) supported on some fixed

Borel subset C of R. Of course, each of these parts is also invariant for
{U.}, so given teR, the function

Ut Ic—"‘-YrTa(:) lc

vanishes off C (here 1¢ denotes the characteristic function of C). Y, being
a unitary function, we have

P ((C—a ()HAC)=0
for all teR. Since the standard flow on R:
gt (W)=w—+a () (weR, teR)

is ergodic, it follows that ¢ither P (C)=0 or P (ﬁ\C):O. The proof is
complete.
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By unitary equivalence, we obtain

TueEOREM 1.1. The spectrum of Ay is either pure point, purely
continuous singular or purely absolutely continuous.

1.2. A function.

Let @, be the function defined for any { in R to be the mean
x4t

value of the almost periodic function x—:»exp(z' fg (u2) du), i. e.

T x4t
lim (2TJ"fexp(f fg (z) a‘u) dx.

T co
=T x

Since, for x, teR, we have

i x4t

Y (e (x)) =exp (:’ fq (x+u) du) ::cxp( i [q (2) d’u),
/ .

E

the function w— Y, (w) is the continuous extension on R of x—3
-t

exp( r'fq (1) du ) Therefore

&

9q (1)=EY: (teR),

where E stands for the expectation operator relative to P. On the other
hand, by (1.1),

EY,=(U.1,1) (teR)

is the Fourier transform of the measure (F(—B)1,1) (B a Borel subset
of R). The latter is of pure type, and its type coincides with the type
of the spectrum of <A,

It thus appears that the determination of the type of the spectrum
of o, reduces to finding the type of the measure whose Fourier
transform is g,.

As a simple result involving @,, we have the following.

THEOREM 1.2, The spectrum of Aq is purely continuous or pure
point according as the limit
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r
lim (27 [ lpg (O] dx

T— oo

—T
does or does not vanish.

The theorem follows immediately from one due to Wiener (cf.
[12], th. 5.6.9.), ensuring that

iy

}im QM! -l-qaq (X)Pdx = = (F{uh1, D
-+~ o egeR
Zr

1.3. Pure point spectrum,

Suppose X is a unit ecigenvector of .Zq with eigenvalue Ao. Then, as
easily seen from (1.2), for every A€R, x1 X is an eigenvector with eigen-
value A+ Ao. Accordingly, for all 20, we have

E (|X]? x)=0,

and so |X| is essentially constant, in fact essentially equal to one. Now
the afore-mentioned theorem of Wiener on subpaces invatiant for {V.}

applies to the effect that {1 X: Ae€eR} is linearly dense in L° (R).
Consequently, {x1 X: AeR} is a complete orthonormal set, and, by
unitary equivalence, we get the following.

THEOREM 1.3, If A, has pure point spectrum, then every real
number is a simple eigenvalue of A,.

Note that the above argument also shows that if &{, has pure point
spectrum, then there exists an almost unitary function X in ker Xq. Since

{U.} leaves ker Zq unaffected, we have for all teR

Yt Ta(:) X= X
whence

Y. =XTaun X.

Thus {Y,} takes the form of a so-called coboundary. According to a
general definition, a cocycle {Z,} is a coboundary if there exists an
almost unitary random variable V such that the processes {Z,} and

{VTwn V} are stochastically equivalent. Hercafter, in agreement with

the terminology employed in [9], such a V will be called an invariant
section of {Z,}.
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1.4. g-groups.
Denote by M, the frequency module of g, i.e. the subgroup of

R generated by {uzeR: a(u)7£0}.

Any compact Abelian group G whose dual G is a discrete subgroup
of R containing M, will be called a lg-group.

Suppose G is a g-group. Then there exist a continuous homomor-
phism ac from R onto a dense subgroup of G, and Q€ in Cr (G) with
Q° (as (1)) =q (¢) for all teR. Putting

{Yfi=

exp( i /’TQG (u)QG du)}
0

defines a cocycle on G. The latter gives rise to the strongly continuous
unitary group {U.°} on L?(G) defined by a formula analogous to (1.1).

A moment’s reflection shows that the generator of {USLY, AS, is, by
the Fourier tranform, unitarily equivalent to the operator &, restricted

to P (é}, B (é) being embedded in an obvious manner in 2 (R).
All of our previous work can be repeated for G in place of
R. The only difference is that in the case where Aqng has pure

A

point spectrum the eigenvalues of .szigh,[a) range over a coset of G
inR and there may happen that the kernel of Aqls %15 void. In this case
{Y.®} is merely a trivial cocycle, which means, by definition, that { Y5}
is stochastically equivalent to the process { exp (IAt) XT ag ey X}, where
A€R and X js an almost unitary random variable on the probability
space (G,Ps) with P being the Haar measure on G. That {Y:f} is

trivial follows immediately upon taking A to be any eigenvalue of A and
X a corresponding unit eigenvector.

An casy argument based on the purity of the spectra shows
that the spectra of &, and g{qh,(&) are of that same type.

On account of the above remarks and the last result of the prece-
ding section the first part of our next theorem is clear.

TurOREM 1.4. If A, has pure point spectrum, then for every

q-group G, the cocycle {Y.C} is trivial, and in the case G:ﬁ, it is ~
coboundary. Conversely, if for some q-group G, the cocycle {Y°} is
trivial, then o, has pure point spectrum.

To prove the second part, note that for any teR
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(1.3) 0y () =Ec Y. S=exp (i) Ec (XT ag@X)

= X |FeX (M exp i (A—7)1),

A
ye @

where Fo denotes the Fourier transform from L2 (G) onto FF(G),
and Eg denotes the expectation operator relative to Pe. Clearly, ¢q is the
Fourier transform of a purely atomic measure and so the theorem
follows.

1.5. A representation theorem.
It follows from what precedes that if <, has pure point spectrum,

then the cocycle {y}e} is trivial and, in accordance with (1.3), for

A

~ B
any unit eigenvector X of Agq ? with eigenvalue A, the identity

pa )= X |Fau X (VP exp G(A—7 1)
ve M, q

holds for all feR. Taking into account that ?TﬁqX is a unit eigenvector

of dq|,.(mq) with eigenvalue A, we arrive at the following.

TueoreMm 1.5. If A, has pure point spectrum, then for any unit
eigenvector (a,) of g, My with eigenvalue A and for all teR, one has

Qg ()= X Ia#lz exp (i (A—w) D).

luEM'q

1.6. Pure point spectrum (continued).

In this section, we show that the class of all g in APr (R) such
that «{, has pure point spectrum is non-void and in fact splits into
two disjoint subclasses, the decomposition being of direct relevance in
the next chapter.

One of these subclasses is made up of all those ¢ in APr (R) for

X

which u, is almost periodic (recall that u; (x)= exp (—i f q W du)

0

(xeR)); in view of the argument theorem of Bohr (cf. [4], [8]), this
last condition may be replaced by the condition that the function
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X —> ] q (1) du—?] (0) x be almost periodic. It is easily verified that,
0

given ge APr (R), if u; belongs to APg (R), then the continuous exten-

sion of 1, on R is an invariant section of {Y.}, and so, by theorem 1.4,
o, has pure point spectrum.

In view of theorem 1.2, the other subclass has to consist of all
those g in APr (R) for which

T » o0

T
lim (27)-! fI @q () dx>0
T

without u, being almost periodic. By modifying a well-known Bohr
construction, we shall show that this subclass is non-void.

Let 4 and A, be two rationally independent real numbers. Let my
and n; be two functions carrying N into Z such that for any keN,
ar=2A1 m (k)4 Az n; (k) satisfies k-2 <a, <2k~ Put

q(X)= X ai’sinarx (xeR).
=1

Clearly é (0)=0. Morcover

[q (@) du= X ar(1— cos ar x)=23 2a; sin® (ax x/2).
. k=1 k=1
0

Bearing in mind that {sin f{=]¢|/2 for [t|<1, we may write whenever
lx|=1

fq W) du=8"'x* I k2=8"1x2 [ u2du=8"1(|x|2—1)-1 2

/ .

3/2
Bt ¥ 1321

whence

o]

lim g (W) du=+ o,

|'a;|—>oo

Thus, by the argument theorem of Bohr, u, is not almost periodic.
Take R*/(2rZ)* for a g-group with as (H=[(A1 ¢, L2 )] for all teR
and
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Q% ([(Oy, O)]) = k°z° a4 sin (my (k) @1+ 1z (k) @)
=]

for all [(@1, ®)]eG. Since X ai?<C+ oo, there exists Y in L?(G)

k=1
such that

Y ([(@1, @)]) ~ kﬁ: i cos (m () @1+ 112 (k) ©).

Put X=exp (iY). One easily verifies that X is an invariant section
of {Y,°}. Thus, in view of theorem 1.4, &{, has pure point spectrum.

1.7. Purely continuous spectrum.

The aim of this section is to prove the following.

THEOREM 1.6. Let (ax) be a sequence of rationally independent
real numbers such that X |ax| <+ oo. Let p be a non-zero real conti-
k=1

nuous periodic function on R with mean value zero. Let

qg (x)= kZ ax p (ar x) (xeR).
=}
Then .54),1( has Pu-rely Continuous SFect'ru.m.
ProoF. We may suppose that p has period 2.
x}t

Since the spectrum of x— exp ( ifockp (ar 1) du) (teR, keN)

o

x4
is contained in axZ, the functions x— exp (tf ar p (ar u) du,),

T
k=1,2,..., are independent (more correctly, their continuous extensions

on (R, P) are so). Thus, for any neN and teR, we have

T wf-¢
lim 2T)~1 | IT exp (ifak p (o u) du) ) dx
T oo =t J
T x-1-t
= JI lim (2T)1fexp (ifak p (ar u) du) dx
k=1 T-+co

T %
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T ﬁ+dkl

= H lim (2T)" f (ifp () du)dx
k=1 T—»o0
—T z
whence
T -t
P (H)=Ilim lim (27" f I exp( fakp (otx 1) du) dx

n+oca T—oo k=1

e ®

(1.4)
= II @, (axt).
k=1
Since ;J(O):O, @, is periodic (with period 2m), and furthermore the

functions ¢—> ¢, (axt), k=1,2,..., are independent. Consequently,
for any neN, we have

T T
(1.5) lim T | |oq (O dt=< lim (2T)™* b/ los (ar )|? dt
1-+00 Y o Tsoa Y k=1
T Ui
— kII 11'1m Q2T |pp (o O? dt-—( lim 2T)'| |p, O dt)
=1 — O

On the other hand, since the function x — f p (W) du is periodic (with

0
period 2x), &, has pure point spectrum. By theorem 1.5 and the per-
iodicity of @, ker .sziph,iz) is non-void, and if (a.) is any unit vector
in ker &y, , then for all teR

op (0= I |’ exp (—iut).
wer

Of course, Ez la.[*<1 unless a@,=0 for all but one g, say u’. The
e

latter case is impossible for otherwise 1,3 would belong to ker
.sﬂph,(z) and consequently, for all integers wu>=0, we would have

ﬁ(,u):O. This jointly with the assumption that ;3(0):0 would imply
p=0, a contradiction. Thus

I'—+ca

(1.6) lim (27)* f lo O dt= X |af'<1,
ne
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and on letting n tend to infinity in (1.5), we get

T
lim (2T)! |qac‘((t)|2 dt=0.

T—oc0

—T

In view of theorem 1.2, this establishes that &4 has purely continuous
spectrum.

1.8. Refinements.

By a suitable choice of (ax) in the preceding construction, either
of the two kinds of the continuous spectrum of &{, can be obtained.

First we reveal a choice of (ax) so that &{, has purely continuous
singular spectrum.

For all neN, let B, be a positive number with the property that

lexp (ix)—1|<B. (x€R)
implies
lpp () —1]|<(n+1)72
Pick a; and x1 in R so that |ai|<1, |[x|=1 and

[exp (iou x)—1 l <ﬁ1 .

Suppose we have chosen ai, ..., @, and xi, ..., . in R so that |ax|<k2
|xs|=k (k=1,..,n), {a, ..., as} is a rationally independent set, and

lexp Garx)) —1|<fr (1=k,[=<n).

In the (n4 1)-th step, we select a..i rationally independent of ay, ... ax
so small that |anw| <@+ 1)"* and

lexp ({aas1p)— 1| <frin (=1, ..., n).
Next, by independency, we find x..: in R such that |xw.|=r+1 and
lexp (fox Xus1) — 1| <Br (k=1,..,n+1).

Continuing the process, we obtain two infinite sequences (ax) and (xx)
such that the set {a:: keN} is rationally independent, |atx| <k=? and
|xe| =k (keN), and

Iexp (iakxz)—1|<,3k (k, [eN),
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Letting g be as in the preceding section, by (1.4), we obtain for all /eN

oo ()| = T (1—(k+1)")>0

=1

whence

Ililm I@q (x)l>0'

T|— 00

Consequently, @, cannot be the Fourier transform of an integrable
function on R, and so ${, must have purely continuous singular specrrum.

Now, on utilizing an argument due to C. C. Moore, we find
(ax) such that A, has purely absolutely continuous spectrum.

On account of (1.6), there exists = (—a, —b)U(c,d) with aq,
b,c,d>0 such that |py,(x)|<d<1 for xel. Pick o (keN) so that
ar=Kk?+o0 (k?) and {ar: keN} is a rationally independent set. Let-
ting ¢ (x) equal the cardinality of {keN: arxel}, we see that
lim ¢ (x)|x|~"*>0. For g as in the preceeding section, we find by (1.4)

Izl —+oo

|§Dq (x)JECSC(x) <A exp (__lell/z)

with some A, B>0. Thus g,eL'(R), and so, by a theorem from
harmonic analysis (cf. [12], th. 1.5.1), ¢, is the Fourier transform
of an integrable function on R. Correspondingly, «{, has purely abso-
Iutely continuous spectrum.

2. Harmonic properties of u,.

2.1. Fourier expansion of u,.

We start with a brief review of some notions and facts from
the harmonic analysis of bounded functions.
A linear continuous functional 2 on L= (R) is called a Banach mean
on L= (R) if it satisfies the following conditions:
@) mQ)=1=||m||,
(ii) m (TsfH)=m(f) for every feL~ (R) and every seR.

A celebrated theorem of Banach [2] ensures the existence of at least
one Banach mean on L~ (R).

If m is Banach mean on L= (R), then under the scalar product
derived from the map L~ (R)XL~ (R)a(f, g — m (fg)eC, L~ (R)/
/AfeL”R): m(fH)=0} is a pre-Hilbert space. The functions
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x — exp (iux) (ueR) generate an orthonormal set in this space. Given
feL= (R) and ueR, the Fourier coefficient of the class of f with

respect to the class of x—exp (fux), f’" (@), is called the wuth Fourier

coefficient of f with respect to m. Of course, f*(u) = mx:({f(x)
exp (—iux)), where the subscript x indicates that the averaging process
refers to the variable x. By Bessel’s inequality, one has

= P wlF<m (D).

peR

Applied to u,, the above inequality shows that, with g running
over R, the sequence (L?q”‘ (u)) is in 2 (R) and has norm =<1. Actually

much more is true of (aqm (u)), as shows the following.

THEOREM 2.1, If m is a Banach mean on L= (R), then the sequence
(@g™ (w)) is in ker oA,

Proor. The starting point is the identity

(2.1) Ug—pwy + QUg(—py = g—p’

valid for all zeR. Firsts, it implies that given peR, the function uy¢- .’
is uniformly continuous and as such may be uniformly approximated
by function-minus-translate difference quotients. Since any Banach
mean vanishes on such difference quotients, given a Banach mean m
on L= (R), we have

m (Ug—w) =0
whence by (2.1)
(2.2) pig™ () +m (qug—w) =0.

Let (px) be a sequence of trigonometric polynomials uniformly
approximating g. Since

m (pr Ug—w) = 2 pr (U—V) ity™ (v),

veR

we clearly have

(2.3) m (qugcp)= lim = P (L—V) 124™ (V).

—oo yeR
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On the other hand, the series 2 é\ @—v) u:,”‘ (v) converges and its
veR

A A
sum equals lim X pr (u—V) ug™ (v) as it is seen from the estimates

f£—-co yeR

I g (u—v) g™ W) —pr (—v) g™ ()]

veR
=(Z 14 =pe D™ (X 1 0P <a—pll-
This jointly with (2.2) and (2.3) yields

.UL;:J () + Ené(ﬂ—v) aqm (v)=0.

Noting that the last equality guarantees that X p? |L;q'” ()< + oo ends
HER

the proof.

In particular, if the Fourier coefficients of u, with respect to some
Banach mean on L= (R) are not all zero, then ¢{, has pure point
spectrum. Conversely, we have the following.

THEOREM 2.2. If A, has pure point spectrum, then there exists a

Banach mean m on L™ (R) such that the sequence (z:;q'" (©)) is non-zero.

Proor. Let X be an invariant section of {Y,}. Denote by @ the
smallest translation-invariant subspace of L~ (R) containing all of the
functions u,, (xeR). With

n
o= X a:i Ty, uqu; (@€C, t, u:€R)

=1

in @ we associate
n -
n (¢)= _El a; eXp (m,- Y E (x.u,- T“(‘i) X).

Since for all ¥ in R

x

# @I=|o@ew(i [aw du)

0
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iy

= E,' a; exp (iu: 1) exp (iy: x) exp(—-ifq (-+x) du)
0

=1

=| = arexp (i 1) xu; (a (1)) Y ¢ (e (),
it follows that

n —_
llpll-=Il = a exp G ) xu ¥ 1.l

= _Zl a: exp(ipt: 4) Xu; Tawpy X||eo

This implies that the linear functional @3¢ — n (¢)eC is well-defined
and has norm =<1.
Since, for every peR, the process

{exp Gutdxy TonX3}={Tan (x.X)}

is strictly stationary, n is translation-invariant: n (Ts ¢)=n (¢) holds for
all seR. In virtue of an invariant prolongation theorem due to AGNEW
and Morsg [1] (cf. also [5], th. 3.3.1), n can be extended to a transla-
tion-invariant functional on L~ (R), the norm being unchanged. Con-
tinuing to denote the extended functional by 7, consider on Lg~ (R) its
real and imaginary parts n; and n,, respectively. Of course, both these
functionals are translation-invariant. Let n; (i, j=1,2) be the continuous
positive linear functionals on Lz~ (R) defined by

nt (H=sup {|n; (@)|: |g|<f, geLz> R)} for {=0 in L~ (R). ni=n!—n;

(j=1, 2). Apparently, these functionals are also translation-invariant. On
extending each of then canonically on L= (R), we find that

FAX (w)=n WUa—w)=m" (Ug(—p) —11® (Wg—py)
+ina' (Ug(—m) — i1 (Ug )

for all zeR, and so at least one of the sequences (1 (uy—p)) G, j=1, 2),
with g running over R, say (m'(Ug-w)), is non-zero. Setting
m=ni'/||n'|, we see that m is a Banach mean on L~ (R) and
(@ (u)) is non-zero.

The proof is complete.
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2.2, Ergodic properties of u,.

The theorems established in the preceding section will be now
used for discussing ergodic properties of u,. Before proceeding further,
we wish to recall some relevant notions and facts, and introduce one

usefull concept.
An clement f in L= (R) is called ergodic if it takes the same value

on any Banach mean on L= (R). Alternatively, f is ergodic if and only
if the closed convex envelope of {Ts f: seR} contains a constant function
(cf. [10]). Such a constant function, if it exists, is the unique mean value
of f. An element f in L~ (R) is said to be totally ergodic if for every
peR, the function f, (x) =f (x) exp (fux) (xeR)is ergodic. As known, all
almost periodic functions on R are totally ergodic.

For needs of the present paper, we introduce the notion of almost
total ergodicity. An element f in L= (R) will be called almost totally
ergodic if given two Banach means m and n on L~ (R), the sequences

(f;\" (1)) and (f’? () are linearly dependent. The qualification «almost
totally ergodic» can be justified as follows. Suppose fe L~ (R) is almost
totally ergodic. Then there is a Banach mean m on L= (R), such that if

n is another Banach mean on L~ (R), then ]?” (,u):/lf?" (u) for all ueR
with some AeC. Since f’" () = 0 for all but countably many
w’s. the same is true with » in place of m. Accordingly, all but countably

many f.’s arc ergodic with mean value zero.
By virtue of theorem 1.3 and theorem 2.1, u, is almost totally

ergodic.

If u, is almost periodic, which happens, as we know, exactly when
@

X —> fq (u) du—c}(O)x is almost periodic, then wu, is totally ergodic.
On othe other hand, ifp A4 has purely continuous spectrum or, equiva-
lently, if %1:110 (2T)‘1f lpg ()2 dx=0, then, by theorem 2.1, @ (1)) =0
for any Banach mean_:'z on L= (R), and consequently u, is totally ergodic
also in this case. Actually, these are the only cases that u, is totally

ergodic. We have the following.

THEOREM 2.3 Being almost totally ergodic, u, is totally ergodic

if and only if either x— f q (1) du—c;(O)x is almost periodic or
0
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T
lim (2T)™! f [‘ga,i((x)l2 dx=0. The latter case occurs exactly when all
—-T

T-»rca

the Fourier coefficients of u, vanish for amny Banach mean on L= (R).

Proor. On account of the preceding remarks, we are left with
proving that, first, if (2," (©))=0 for any Banach mean m on L~ (R),
then A, has purely continuous spectrum; secondly, if u, is totally ergodic
and #,” (u)==0 for some x€R, m being a Banach mean on L~ (R), then
u, is almost periodic.

The first paragraph follows immediately from theorem 2.2.

To prove the second, let £>0 be given. By the ergodicity of u,—m,
there exist positive numbers a: (i=1,...,n) with '21 a;=1 and real

numbers £ (i=1, ... ,#n) such that
101
I ‘El a; Tr, Ugq(-py— Ug™ (|- <e.
Since the expression on the left side is equal to
" — E————
I ,E] i tg Toy Ug—py —Uq™ (12) Ug|| )
1=

taking into account that
o A
X —> (Uug Ty, Eq(_m) (x):exp(i (fq () du+u (x+ti))) i=1,..,n)

@

is almost periodic, we infer that 4,™ (u) u, is the uniform limit of
almost periodic functions, and further that u, is almost periodic.

The proof is complete.

We close the paper by noting that the above theorem exhibits
the following curious phenomenon: if g is in the «non-almost perio-
dic» subclass of the class of all peAPr (R) such that &, has

vy x
pure spectrum, i.e. if Il'im Q2T | |pg (¥)|* dx>0 while x — f g (u) du—
0

—T

-—ar (0) x is not almost periodic, then u, is almost totally ergodic without
being totally ergodic.
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