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Abstract

We study isolated points of spaces comprised of homomorphisms between a given ordered AL-
algebra and a given unital normed algebra. An ordered AL-algebra is a complex AL-space and
simultaneously a Banach algebra such that the positive cone associated with the underlying
partial ordering is closed under multiplication, and such that the algebra norm restricted to
the positive cone is multiplicative. The class of ordered AL-algebras contains—as particular
subclasses—semigroup algebras, group algebras, and convolution algebras of integrable, even
functions on groups. We determine isolated points for various spaces of homomorphisms from
ordered AL-algebras, including specifically spaces of homomorphisms from algebras belonging
to the three subclasses just mentioned. We also discuss certain properties of homomorphisms
beyond isolability, which one is naturally led to consider in connection with isolated points of
spaces of homomorphisms. By way of application, we exhibit several AL-algebras that are not
pairwise isometrically algebra and order isomorphic.
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1. Introduction

Families of operators on a Banach space satisfying a functional equation have long been
the object of intense studies. Semigroups, groups, and cosine families of operators are ar-
guably the most prominent examples among these. Recently, the problem of identifying
and studying isolated points of spaces formed by operator-valued solutions of a functional
equation, acting on a common linear space, has attracted considerable interest. Various
investigations have been made in regard to isolated points of spaces of strongly continu-
ous semigroups and cosine families of operators [12], [13], [14], [17], [18], [29], [30], [76],
integrated semigroups and operator sine functions [11], and operator-valued solutions of
fractional evolution equations [33]. Inspired by these contributions, we embark in this
memoir on a study of isolated points of spaces of homomorphisms from Banach algebras
to normed algebras, with all homomorphisms in each relevant space sharing a common
domain and a common codomain.

At the heart of our investigations is the observation that strongly continuous semi-
groups, groups, and cosine families of operators lead naturally to homomorphisms from
certain Banach convolution algebras. To wit, if {S (t)}t≥0 is a uniformly bounded, strongly
continuous one-parameter semigroup on a Banach space X, then

H(f) =

∫ ∞

0

f(s)S (s) ds (f ∈ L1(R+))

defines a continuous homomorphism from L1(R+) into L (X). Here L1(R+) is the Banach
algebra of equivalence classes of complex-valued, Lebesgue integrable functions on the
non-negative half-line R+, with the convolution product

(f ⋆ g)(t) =

∫ t

0

f(t− s)g(s) ds (f, g ∈ L1(R+), a.e. t ∈ R+),

and L (X) is the algebra of all bounded linear operators onX. The homomorphismH can
be viewed as an integrated form of the semigroup {S (t)}t≥0 (see, e.g., [95, Proposition
2.23] in regard to this terminology). We hasten to remark that not every continuous homo-
morphism from L1(R+) into L (X) is of the form as above. Similarly, uniformly bounded,
strongly continuous one-parameter groups and cosine families of operators lead to con-
tinuous homomorphisms from L1(R) and from L1

e(R), respectively. Here L1(R) is the
Banach algebra of equivalence classes of complex-valued, Lebesgue integrable functions
on the real line R, and L1

e(R) is the Banach algebra of equivalence classes of complex-
valued, Lebesgue integrable, even functions on R, these algebras being equipped with the

[5]



6 A. Bobrowski and W. Chojnacki

convolution product

(f ⋆ g)(t) =

∫
R
f(t− s)g(s) ds (f, g ∈ L1(R) or f, g ∈ L1

e(R), a.e. t ∈ R+).

Again, the homomorphisms from L1(R) and from L1
e(R) induced by uniformly bounded

one-parameter groups or cosine families can be treated as integrated forms of the un-
derlying operator groups or cosine families, and, as in the case of homomorphisms from
L1(R+), there are more continuous homomorphisms from L1(R) and from L1

e(R) than
just the integrated forms of uniformly bounded one-parameter operator groups or cosine
families.

In this memoir, we shall study isolated points of spaces of homomorphisms from vari-
ous Banach algebras that include, as particular cases, the three algebras just mentioned:
L1(R+), L1(R), and L1

e(R). The latter algebras are representative of three classes of al-
gebras that will serve as domains of homomorphisms, namely the semigroup algebras
of certain semigroups of locally compact groups, the group algebras of locally compact
Abelian groups, and the convolution algebras of (equivalence classes of) Haar integrable,
even functions on locally compact Abelian groups. Continuous homomorphisms from alge-
bras in these classes are closely linked to operator-valued semigroups, groups, and cosine
families indexed by either semigroups or groups that include R+ and R as particular
cases. The relevant links will turn out to be instrumental to our analysis.

The semigroup algebras, the group algebras, and the convolution algebras of inte-
grable, even functions on groups considered in the memoir will, as it happens, be mem-
bers of a certain common class of complex Banach algebras that we shall refer to as the
ordered AL-algebras. An ordered AL-algebra is a complex AL-space—a space which is
a special case of a complex Banach lattice—and simultaneously a Banach algebra, with
a multiplication tied to the order structure in a specific fashion. The link between the
multiplication and the order is captured by the requirement that the positive cone asso-
ciated with the underlying partial ordering be closed under multiplication, and that the
norm restricted to the positive cone be multiplicative.

The reason behind singling out the ordered AL-algebras as a particular point of in-
terest is that every non-zero algebra in this class admits a special linear multiplicative
functional of norm 1, termed here the fundamental character on the algebra. Informally
speaking, in many cases where the ordered AL-algebra consists of complex-valued func-
tions on a given set, the fundamental character is represented as an integral over that
set. Any fundamental character naturally gives rise to isolated homomorphisms in appro-
priate spaces of homomorphisms. More specifically, if L is a non-zero, complex ordered
AL-algebra with fundamental character l, and if A is a unital normed algebra with iden-
tity eA, then the associated homomorphism eA ⊗ l : L → A defined by

(eA ⊗ l)x = l(x)eA (x ∈ L)

has the following property: given a continuous homomorphism H : L → A, and this
homomorphism may be non-unital while L is unital, the condition

∥H − eA ⊗ l∥ < 1 (1.1)

implies that H = eA⊗l. This, in particular, means that eA⊗l—which hereafter will be re-
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ferred to as the fundamental homomorphism from L to A—is an isolated homomorphism
among all continuous homomorphisms from L to A. With the existence of isolated ho-
momorphisms thus ensured, a natural question arises as to whether there exist isolated
homomorphisms from ordered AL-algebras that are different from fundamental homo-
morphisms. As we establish in this memoir, the answer is in the affirmative for each of
the algebras L1(R+), L1(R), and L1

e(R), and, generally, for the classes of algebras for
which L1(R+), L1(R), and L1

e(R) are representative members.
The constant 1 in condition (1.1) cannot in general be replaced by a greater number.

Indeed, if L is a non-zero ordered AL-algebra with fundamental character l, and if A is
a unital normed algebra, then, letting 0 denote the zero homomorphism from L to A, we
have

∥0− eA ⊗ l∥ = ∥eA ⊗ l∥ = ∥eA∥∥l∥ = 1,

so ∥0 − eA ⊗ l∥ < α for every α > 1, and yet 0 ̸= eA ⊗ l. Moreover, if A possesses a
non-trivial idempotent e (0 ̸= e ̸= eA) of norm 1, then, with (eA − e) ⊗ l denoting the
homomorphism from L to A defined by

((eA − e)⊗ l)(x) = l(x)(eA − e) (x ∈ L),

we have
∥(eA − e)⊗ l − eA ⊗ l∥ = ∥e∥ ∥l∥ = 1,

so ∥(eA − e)⊗ l − eA ⊗ l∥ < α for every α > 1, but clearly (eA − e)⊗ l ̸= eA ⊗ l. Having
said that, if A is a unital normed algebra without non-trivial idempotents, then it may
well be that there exists α > 1 such that, if H is a non-zero, continuous homomorphism
from L to A satisfying

∥H − eA ⊗ l∥ < α,

then H = eA ⊗ l. This leads to the following problem: given a non-zero ordered AL-
algebra L, find the greatest positive number α(L) such that, for every non-zero, continuous
homomorphism H from L to a unital normed algebra A without non-trivial idempotents,
the condition

∥H − eA ⊗ l∥ < α(L)

implies that H = eA ⊗ l. Calling α(L) so defined the α-number of L, we take as one of
our goals to calculate α-numbers for various ordered AL-algebras. The α-numbers turn
out to be invariant under isometric isomorphisms of ordered algebras, and this can be
exploited for distinguishing between isometrically non-isomorphic ordered AL-algebras.
For example, by virtue of having different α-numbers, the algebras L1(R+) and L1(R)
and the algebras L1(R+) and L1

e(R) turn out not to be isometrically algebra and order
isomorphic.

Having indicated the gist of our findings, we now proceed to overview individual
chapters of the memoir.

Chapter 2 introduces ordered AL-algebras and related entities—fundamental charac-
ters and fundamental homomorphisms. In the same chapter, the critical isolability prop-
erty of the fundamental homomorphisms from ordered AL-algebras—one that has already
been mentioned above—is established. Following that, the α-number of an ordered AL-
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algebra is introduced, and its invariance to isometric algebra and order isomorphisms
is proved. Moreover, various notions of isolability and accessibility of homomorphisms,
including a strong form of isolability which we term total isolability, are introduced and
discussed. It is proved that every totally isolated homomorphism takes a particularly
simple form—it is scalar in a specific sense.

In Chapter 3 we consider the semigroup algebras of certain subsemigroups of locally
compact groups and their homomorphisms. We single out a vast class of semigroup alge-
bras for which the α-number is equal to 1. We also reveal totally isolated homomorphisms
from semigroup algebras that are different from fundamental homomorphisms.

Chapter 4 concerns three concrete semigroup algebras, one of which is L1(R+). The
specific nature of the underlying semigroups allows us to discuss comprehensively isola-
bility properties of homomorphisms from the algebras in question. In particular, we show
that α(L1(R+)) = 1, and that some scalar homomorphisms from L1(R+) are isolated,
and some are not.

Chapter 5 concerns the group algebras of locally compact Abelian groups and their
homomorphisms. We show that in many cases the calculation of the α-number of a
particular group algebra can be reduced to the calculation of a certain numerical charac-
teristic of the underlying group, which we term the β-number of the group. Using purely
harmonic-analytic arguments, we compute β-numbers for many groups, including all fi-
nite Abelian groups. This leads to the computation of the α-numbers of many group
algebras. In particular, we find that α(L1(R)) = 2. We demonstrate that generally the α-
numbers of group algebras are no smaller than

√
3. Moreover, all scalar homomorphisms

from group algebras are shown to be totally isolated.
Chapter 6 concerns the convolution algebras of Haar integrable, even functions on

locally compact Abelian groups and their homomorphisms. We introduce a numerical
characteristic of a pair comprising a locally compact Abelian group and a bounded, scalar
cosine function on that group; we call this characteristic the γ-number of the pair. We
use γ-numbers to calculate the α-numbers of the convolution algebras of integrable, even
functions on various groups. We find, among other things, that α(L1

e(R)) = 2. We estab-
lish that generally the α-numbers of convolution algebras of integrable, even functions
are no smaller than

√
5/2. We also show that, as in the case of scalar homomorphisms

from group algebras, all scalar homomorphisms from convolution algebras of integrable,
even functions are totally isolated. As an independent result, one of two similar ones,
we prove that L1(R) and L1

e(R) are not isometrically isomorphic as ordered algebras.
Given that α(L1(R)) = α(L1

e(R)) = 2, proving this fact requires an invariant different
from the α-number. The invariant that we devise allows us to establish that L1(R) and
L1
e(R) not only are not isometrically isomorphic as ordered algebras, but in fact are not

isometrically isomorphic as normed algebras.
Finally, the short seventh chapter furnishes a list of nine ordered AL-algebras, no two

of which are isometrically algebra and order isomorphic. This provides a kind of symbolic
summary of the developments reported in the memoir.

Basic notation. We shall use the following notation: N = {1, 2, . . .} is the set of natural
numbers; Z = {0,±1,±2, . . .} is the set of integers; Z+ = {0, 1, 2, . . .} is the set of non-
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negative integers; Q is the set of rational numbers; C is the complex plane; T = {z ∈ C |
|z| = 1} is the unit circle in the complex plane; D = {z ∈ C | |z| < 1} is the open unit disc
in the complex plane; D = {z ∈ C | |z| ≤ 1} is the closed unit disc in the complex plane;
C+ = {z ∈ C | Re z > 0} is the open complex right half-plane; C+ = {z ∈ C | Re z ≥ 0}
is the closed complex right half-plane; H = {z ∈ C | Im z ≥ 0} is the closed complex
upper half-plane; iR = {z ∈ C | Re z = 0} is the vertical line in the complex plane passing
through the plane’s origin.

For n ∈ N, we set
Zn = {0, 1, . . . , n− 1};

this set is a group with respect to addition modulo n, the additive group of integers
modulo n. Further, we set

Un =

{
exp

(
2πik

n

) ∣∣∣∣ k = 0, . . . , n− 1

}
;

this set is a group under multiplication, the multiplicative group of nth roots of unity.
The cardinality of a set A is denoted by |A|.
The characteristic function of a subset A of a set is denoted by χA. The function

constantly equal to 1 on a set A is denoted by 1A.

2. Ordered AL-algebras

2.1. Definitions. As already foreshadowed in the Introduction, fundamental to our
investigations will be a special class of complex Banach lattices, each member of which
is an AL-space equipped with a multiplication which gives the space the structure of a
Banach algebra and satisfies certain additional conditions. We precede the definition of
that class with some concepts and results.

We first recall the notion of a complex Banach lattice. As a linear space, a complex
Banach lattice is the complexification of a real Banach lattice. Generally, the complexi-
fication of a real Banach space can be endowed with various norms, each extending the
norm of the original real space [62], [86]. In contrast, a complex Banach lattice comes, by
definition, equipped with a specific norm which extends the norm of the underlying real
Banach lattice. Going into more detail, suppose that X is the complexification of a real
Banach lattice (XR, ∥ · ∥) with a partial ordering ≤. Given x ∈ XR, let

x+ = x ∨ 0, x− = (−x) ∨ 0, and |x| = x ∨ (−x).

Let X+ = X+
R = {x ∈ XR | x ≥ 0}. The set X+ is called the positive cone of X. Consider

x ∈ X written uniquely as x = u+ iv, where u, v ∈ XR, and define the modulus |x| ∈ X+

of x by
|x| =

∨
{u cos θ + v sin θ | 0 ≤ θ < 2π}.

That the supremum in X+ here exists is a non-trivial fact—see [1, p. 104] or [59, Prop.
2.2.1]. Alternatively, one may define the modulus of x by

|x| = (|u|2 + |v|2)1/2,
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where the expression on the right-hand side is formed with the aid of the functional calcu-
lus of Youdine [98] and Krivine [50]. As explained in [26, pp. 326–329] and [54, pp. 40–42],
if y1, . . . , yn are elements of a real Banach lattice Y and if f : Rn → R is continuous
and positively homogeneous of degree 1, then one can always define f(y1, . . . , yn) ∈ Y .
The mapping f 7→ f(y1, . . . , yn) is linear and preserves the lattice operations when-
ever y1, . . . , yn ∈ Y +; in particular, if f(s1, . . . , sn) ≥ 0 whenever s1, . . . , sn ≥ 0, then
f(y1, . . . , yn) ≥ 0 whenever y1, . . . , yn ∈ Y +. In line with this, the second definition of
the modulus of x results from applying the Youdine–Krivine calculus to the function
f(s1, s2) = (|s1|2 + |s2|2)1/2.

It can be shown that, for α ∈ C and x, y ∈ X, we have: |x| = 0 if and only if x = 0;
|αx| = |α| |x|; |x+ y| ≤ |x|+ |y|. These properties ensure that setting

∥x∥ = ∥|x|∥ (x ∈ X)

defines a norm on X. Moreover, given x = u+iv ∈ X, the inequalities |u| ≤ |x|, |v| ≤ |x|,
and |x| ≤ |u|+ |v| imply that

1
2 (∥u∥+ ∥v∥) ≤ ∥x∥ ≤ ∥u∥+ ∥v∥.

Therefore, ∥ · ∥ not only is a norm on X, but is in fact a norm equivalent to the standard
norm on X defined by

∥x∥C = sup
0≤θ<2π

∥u cos θ + v sin θ∥ (x ∈ X).

The Banach space (X, ∥ · ∥) is precisely what one means by the complex Banach lattice
with underlying real Banach lattice XR. It is clear that the norm of X extends the norm
of XR and, moreover, has the property that, if x, y ∈ X are such that |x| ≤ |y|, then
∥x∥ ≤ ∥y∥.

If X is a complex Banach lattice, then the underlying real Banach lattice XR is called
the real part of X and is uniquely determined as the real linear span of X+.

For details of the above remarks, see [1, §3.2], [74, Chapter II, §11], [85], or [99].
We next recall the notion of an AL-space. A (real or complex) Banach lattice (X, ∥·∥)

is an AL-space (or abstract L-space) if

∥x+ y∥ = ∥x∥+ ∥y∥ whenever x, y ∈ X+ with x ∧ y = 0;

see [4, Def. 4.20], [54, Def. 1.b.1], or [59, Def. 1.4.6]. An equivalent definition, due to
S. Kakutani [44], states that a Banach lattice X is an AL-space if and only if

∥x+ y∥ = ∥x∥+ ∥y∥ whenever x, y ∈ X+.

For an argument establishing the equivalence of the two definitions, see [51, §2, Theorem 6]
or [75, p. 99]. The equivalence also follows easily from the representation theorem for AL-
spaces conforming to the first definition—see [4, p. 200] or [54, Remark 1, p. 17]. It is a
standard fact that every space of the form L1(Ω, µ), where (Ω, µ) is a measure space, is
an AL-space.

We are now ready to introduce a definition.
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Definition 2.1. Let L be a complex Banach algebra. Then:

(i) L is an AL-algebra if there is a partial order ≤ in terms of which L is a complex
AL-space;

(ii) L is an ordered AL-algebra if L is an AL-algebra such that

xy ∈ L+ and ∥xy∥ = ∥x∥ ∥y∥ whenever x, y ∈ L+. (2.1)

Remarks. (1) The terminology of the above definition is a minor modification of the
terminology introduced by White [90].

(2) An AL-algebra may fail to be an ordered AL-algebra. For example, as pointed
out in [90], the space ℓ1(Z) of all complex-valued, summable functions on Z, taken with
coordinatewise multiplication and the usual order, is an AL-algebra, but not an ordered
AL-algebra.

(3) There are many examples of ordered AL-algebras, among them various convo-
lution algebras such as semigroup algebras, group algebras, and convolution algebras
of integrable, even functions on groups. Specific algebras representing each of the three
last-mentioned categories will emerge later on and will play a vital role in the ensuing
study.

(4) Every ordered AL-algebra is a Banach lattice algebra. A Banach lattice algebra
is a Banach algebra and simultaneously a Banach lattice such that the positive cone
associated with the underlying partial ordering is closed under multiplication [23], [91],
[92]. Of the two types of algebras, Banach lattice algebras and ordered AL-algebras, the
latter will be more adequate for our considerations. Basic general arguments to be put
forward in what follows require that the norm restricted to the positive cone be both
additive and multiplicative, and as such are geared to work for ordered AL-algebras
rather than for general Banach lattice algebras.

2.2. The fundamental character. Given a complex ordered AL-algebra L with real
part LR, we define a mapping l : LR → R by

l(x) = ∥x+∥ − ∥x−∥ (x ∈ LR).

Note that l(x) = ∥x∥ for x ∈ L+, so, in particular, l(x) ≥ 0 whenever x ∈ L+. Other
basic properties of l are summarised in the lemma that follows. That lemma draws upon a
fundamental extension theorem due to Kantorovich [47]; see also, e.g., [4, Theorem 1.10],
[3, Lemma 8.23], or [3, Theorem 9.30].

Lemma 2.2. The mapping l has the following properties:

(i) if x ∈ LR is represented as x = x1 − x2 with x1, x2 ∈ L+
R , then l(x) = l(x1)− l(x2);

(ii) l is linear;
(iii) l is multiplicative.

Proof. (i) Since x1 ≥ 0 and x1 = x + x2 ≥ x, we see that x1 ≥ x+. Similarly, x2 ≥ x−.
Now, introducing h := x2 − x− = x1 − x+, we have

l(x1)− l(x2) = ∥x+ + h∥ − ∥x− + h∥ = ∥x+∥+ ∥h∥ − ∥x−∥ − ∥h∥
= ∥x+∥ − ∥x−∥ = l(x).
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(ii) Homogeneity is established as follows: if α ≥ 0 and if x ∈ LR, then αx+ and αx−

are non-negative, and, by (i), l(αx) = ∥αx+∥ − ∥αx−∥ = α(∥x+∥ − ∥x−∥) = αl(x); the
case α < 0 is treated similarly. Additivity is also a consequence of (i): if x, y ∈ LR, then

l(x+ y) = l(x+ + y+ − x− − y−) = ∥x+ + y+∥ − ∥x− + y−∥
= ∥x+∥+ ∥y+∥ − ∥x−∥ − ∥y−∥ = l(x) + l(y).

(iii) If x, y ∈ LR, then, by (2.1),

l(xy) = l
(
(x+ − x−)(y+ − y−)

)
= l

(
x+y+

≥0
+ x−y−

≥0
− x+y−

≥0
− x−y+

≥0

)
= ∥x+y+∥+ ∥x−y−∥ − ∥x+y−∥ − ∥x−y+∥
= ∥x+∥ ∥y+∥+ ∥x−∥ ∥y−∥ − ∥x+∥ ∥y−∥ − ∥x−∥ ∥y+∥
= (∥x+∥ − ∥x−∥)(∥y+∥ − ∥y−∥) = l(x)l(y).

As any other real linear functional, l can be uniquely extended to a complex linear
functional on L. Denoting the extended functional again by l, we have

l(x) = l(u) + il(v) (x = u+ iv ∈ L, u, v ∈ LR).

It is straightforward to verify that the complex-valued functional l is complex multiplica-
tive.

Proposition 2.3. If L is a non-zero ordered AL-algebra and if l is the complex-valued
functional on L introduced above, then ∥l∥ = 1.

Proof. Since l is linear multiplicative, we have ∥l∥ ≤ 1 (cf. [15, §16, Proposition 3]), and
since l(x) = ∥x∥ for every x ∈ L+ and L+ is non-zero, we in fact have ∥l∥ = 1.

Convention. All ordered AL-spaces considered from now on will be tacitly assumed to
be non-zero.

It is customary to refer to a non-zero, complex-valued linear multiplicative functional
on a complex algebra as a character on that algebra. Given a complex algebra A, the
collection of all characters on A will be denoted by ∆(A), and called the character space
of A.

Definition 2.4. Let L be an ordered AL-algebra. Then the corresponding functional l
is the fundamental character on L.

We record the following immediate consequence of Proposition 2.3:

Proposition 2.5. For every ordered AL-algebra L, ∆(L) is non-empty.

We digress momentarily to mention that a non-commutative Banach algebra may have
an empty character space. A well-known example of such an algebra is L (H), where H
is a Hilbert space of dimension at least 2 (that this is the case can be inferred, e.g., from
the following two facts:

(i) L (H) is simple when H is finite-dimensional [10, Sect. 13.6, Theorem 10];
(ii) every operator in L (H) is the sum of two commutators when H is infinite-dimen-

sional; see [37, Corollary to Theorem 8] or [96, Theorem 6.1]).
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In connection with this example, it is interesting to note that there exist infinite-dimen-
sional Banach spaces X, none of which is isomorphic to a Hilbert space, such that the
algebra L (X) admits a character [58], [60], [78], [93], [94].

2.3. Fundamental homomorphisms. We now reveal homomorphisms from ordered
AL-algebras that have a distinctive isolability property. The development in this section
is central to the rest of the memoir.

Given two normed spaces X and Y , we denote by L (X,Y ) the space of all bounded
linear operators from X to Y , endowed with the corresponding operator norm.

Suppose that X is a normed space. The dual space of X is denoted by X∗. The value
of a functional x∗ ∈ X∗ at x ∈ X is written x∗(x). We abbreviate L (X,X) as L (X). The
identity operator on X is denoted by IX . We recall for the record that, if X is non-zero,
then L (X) is a unital normed algebra, with IX as the identity element; the non-nullity
of X is required to ensure that ∥IX∥ = 1, in line with the standard convention whereby
the identity of a unital normed algebra has norm 1.

Suppose that X and Y are two normed spaces. For x∗ ∈ X∗ and y ∈ Y , let y ⊗ x∗

denote the operator in L (X,Y ) given by

(y ⊗ x∗)(x) = x∗(x)y (x ∈ X).

It is readily seen that ∥y ⊗ x∗∥ = ∥x∗∥ ∥y∥.
Let X and A be two normed algebras. We denote by Hom(X,A) the set of all continuous

algebra homomorphisms from X to A. It is immediate that, if e is an idempotent in A

and if ϕ is a character on X, then e⊗ ϕ is a homomorphism in Hom(X,A). In particular,
if A is unital, then, for each ϕ ∈ ∆(X), eA ⊗ ϕ is a homomorphism in Hom(X,A).

Definition 2.6. Let L be an ordered AL-algebra with fundamental character l, and let
A be a unital normed algebra. Then eA ⊗ l is the fundamental homomorphism from L

to A.

The pertinence of introducing the fundamental homomorphisms lies in the following
result.

Theorem 2.7. Let L be an ordered AL-algebra with fundamental character l, and let
A be a unital normed algebra. If H ∈ Hom(L,A) is such that ∥H − eA ⊗ l∥ < 1, then
H = eA ⊗ l. Moreover, the above statement fails in general if ‘<’ is replaced by ‘≤’,
namely:

(i) it fails for H = 0;
(ii) it does not hold in general for non-zero H ∈ Hom(L,A) because of the following fact:

if A is a unital normed algebra with a non-trivial idempotent of norm 1, then there
exists a non-zero H ∈ Hom(L,A) such that ∥H − eA ⊗ l∥ = 1.

Remark 2.8. There is an abundance of unital normed algebras having non-trivial idem-
potents of norm 1. The following observation will be of relevance later on: if X is a
normed space of dimension at least 2, then L (X) possesses a non-trivial idempotent of
norm 1. Indeed, if x ∈ X is such that ∥x∥ = 1, and if x∗ ∈ X∗ is such that ∥x∗∥ = 1 and
x∗(x) = ∥x∥, then x⊗ x∗ is an idempotent in L (X) such that ∥x⊗ x∗∥ = ∥x∥ ∥x∗∥ = 1.
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Moreover, x⊗x∗ is non-trivial: it is clearly non-zero, and since its range is one-dimensional,
and hence has dimension smaller than the dimension of X, it also differs from IX .

The proof of Theorem 2.7 will be based on the following result due to Cox [20],
Nakamura and Yoshida [64], Hirschfeld [42], and Wallen [89]:

Proposition 2.9. If A is a unital normed algebra and if x ∈ A with

sup
n∈N

∥xn − eA∥ < 1,

then x = eA.

It is worth mentioning that a slightly stronger version of the above proposition holds
true, and that this stronger version can be proved by a remarkably short argument;
see [89].

Proof of Theorem 2.7. For the first part, given that every element of L is a linear com-
bination of elements of L+, we need only show that H(x) = (eA ⊗ l)(x) whenever
x ∈ L+ and ∥x∥ = 1. Let x ∈ L+ be such that ∥x∥ = 1. Then, for every n ∈ N,
l(xn) = ∥xn∥ = ∥x∥n = 1, and further

∥(H(x))n − eA∥ = ∥H(xn)− (eA ⊗ l)(xn)∥ ≤ ∥H − eA ⊗ l∥ ∥xn∥ = ∥H − eA ⊗ l∥.

Since ∥H − eA ⊗ l∥ < 1 by assumption, we see that supn∈N ∥((H(x))n − eA∥ < 1. An
application of Proposition 2.9 now implies that H(x) = eA. Taking into account that
eA = l(x)eA = (eA ⊗ l)(x), we conclude that H(x) = (eA ⊗ l)(x), as required.

For the second part, suppose first that A is an arbitrary unital normed algebra. With
0 denoting the zero homomorphism from L to A, we have

∥0− eA ⊗ l∥ = ∥eA ⊗ l∥ = ∥eA∥ ∥l∥ = 1,

and then also 0 ̸= eA ⊗ l. This proves assertion (i).
Suppose now that A is a unital normed algebra with a non-trivial idempotent e of

norm 1. Then f = eA−e is a non-trivial idempotent and f⊗l is a non-zero homomorphism
in Hom(L,A). Moreover,

∥f ⊗ l − eA ⊗ l∥ = ∥eA∥ ∥l∥ = 1.

The internal statement in assertion (ii) follows, and thereby so do the assertion itself and
the entire theorem.

2.4. The α-number. A unital algebra A is said to have no non-trivial idempotents if
the only idempotents of A are the zero element and the identity element of A. We denote
by Awni the class of complex, unital normed algebras without non-trivial idempotents.
This class is obviously non-void. For example, if S is a connected topological space, then
the collection Cb(S) of all bounded, continuous, complex-valued functions on S, taken
with pointwise operations of addition, scalar multiplication, and product, and equipped
with the uniform norm, is a unital Banach algebra without non-trivial idempotents.

Let L be an ordered AL-algebra with fundamental character l. If A is a unital normed
algebra, then, by Theorem 2.7, the infimum of ∥H − eA ⊗ l∥ over all H ∈ Hom(L,A)

different from eA ⊗ l is no smaller than 1; and if only A has no non-trivial idempotent
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and the zero homomorphism is excluded from the count, chances are that the infimum
will be strictly greater than 1. This motivates the following definition.

Definition 2.10. Let L be an ordered AL-algebra with fundamental character l. For
a unital normed algebra A, let Hom•(L,A) denote the set of all non-zero, continuous
homomorphisms from L to A different from eA ⊗ l. Then

α(L) := inf
A∈Awni

H∈Hom•(L,A)

∥H − eA ⊗ l∥

is the α-number of L.

To proceed further, we require one more definition.

Definition 2.11. Let (L1, ∥ · ∥L1
) and (L2, ∥ · ∥L2

) be two ordered AL-algebras. A linear
map I : L1 → L2 is an isometric isomorphism of ordered algebras (or isometric algebra
and order isomorphism) if the following conditions are satisfied:

(i) I is an isometric isomorphism of Banach spaces, i.e., ∥I(x)∥L2
= ∥x∥L1

for x ∈ L1

and I is ‘onto’;
(ii) I is a homomorphism of Banach algebras, i.e., I(xy) = I(x)I(y) for x, y ∈ L1;
(iii) I preserves the order, i.e., I(x) ∈ L+

2 whenever x ∈ L+
1 .

Theorem 2.12. The α-number is invariant under isometric isomorphisms of ordered
algebras.

Proof. Let (L1, ∥ · ∥L1
) and (L2, ∥ · ∥L2

) be two ordered AL-algebras with fundamental
characters l1 and l2, respectively. Let I : L1 → L2 be an isometric isomorphism of ordered
algebras. If x ∈ L+

1 , then I(x) ∈ L+
2 , and so l2(I(x)) = ∥I(x)∥L2

= ∥x∥L1
= l1(x). Since

every element of L1 is a linear combination of elements of L+
1 , we have l2(I(x)) = l1(x)

for all x ∈ L1. In other words, l1 = l2 ◦ I. It is now clear that, if A is a unital normed
algebra, then

eA ⊗ l1 = (eA ⊗ l2) ◦ I.

Suppose that A ∈ Awni. Let H be a non-zero homomorphism in Hom(L2,A) such that
∥H − eA ⊗ l2∥ < α(L1). Then G := H ◦ I is a non-zero homomorphism in Hom(L1,A)

and

∥G− eA ⊗ l1∥ = sup
∥x∥L1

=1

∥H(I(x))− (eA ⊗ l2)(I(x))∥ = sup
∥x∥L2

=1

∥H(x)− (eA ⊗ l2)(x)∥

= ∥H − eA ⊗ l2∥ < α(L1).

It now follows, by definition of α(L1), that G = eA⊗ l1. Therefore, H = (eA⊗ l1) ◦ I−1 =

eA ⊗ l2, showing that α(L2) ≥ α(L1). As the roles of L1 and L2 can be interchanged, we
conclude that α(L1) = α(L2).

As it turns out, α-numbers can be calculated in many interesting cases and can be
effectively used to distinguish between isometrically non-isomorphic ordered AL-algebras.
We shall elaborate on this shortly, but first we shall discuss different, though related,
matters.
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2.5. Isolability and accessibility of homomorphisms. Theorem 2.7 makes it evident
that fundamental homomorphisms from ordered AL-algebras are isolated. What it means
for a homomorphism to be isolated is rather clear, nonetheless Definition 2.13 below gives
a clear-cut statement. As it turns out, fundamental homomorphisms from ordered AL-
algebra enjoy a slightly stronger property than just mere isolability. We term this property
total isolability ; its precise formulation is also given in Definition 2.13. In the present
section, we start a systematic study of the question of recognising which homomorphisms
from ordered AL-algebras are totally isolated. Some of the results obtained here will be
used in subsequent sections to reveal totally isolated homomorphisms that are different
from fundamental homomorphisms.

If X and A are two normed algebras, then Hom(X,A) is part of L (X,A), and this, in
particular, implies that the distance between members of Hom(X,A) can be measured in
the operator norm of L (X,A).

Definition 2.13. Let X be a normed algebra, let A be a unital normed algebra, and let
H ∈ Hom(X,A). Then:

(i) H is scalar if, for all x ∈ X, H(x) is a scalar multiple of eA; otherwise, H is non-
scalar ;

(ii) H is accessible if there is a sequence {Hn}n∈N in Hom(X,A) such that Hn ̸= H for
each n ∈ N and limn→∞ ∥H −Hn∥ = 0; otherwise, H is isolated ;

(iii) H is essentially accessible if there exist a unital normed algebra B, an isometric
homomorphism I : A → B with I(eA) = eB, and a sequence {Hn}n∈N in Hom(X,B)

such that Hn ̸= I ◦H for each n ∈ N and limn→∞ ∥I ◦H−Hn∥ = 0; otherwise, H is
totally isolated.

Remark. The following observation complements the above definition: if X is a normed
algebra and if A is a unital algebra, then, for each ϕ ∈ ∆(X), eA ⊗ ϕ is a non-zero, scalar
homomorphism in Hom(X,A), and, conversely, every non-zero, scalar homomorphism in
Hom(X,A) takes the form eA ⊗ ϕ for some ϕ ∈ ∆(X).

Theorem 2.14. Let L be an ordered AL-algebra with fundamental character l, and let
A be a unital normed algebra. Then the fundamental homomorphism eA ⊗ l is totally
isolated.

Proof. Let B be a unital normed algebra, and let I : A → B be an isometric homomor-
phism with I(eA) = eB. Then I ◦ (eA ⊗ l) = eB ⊗ l. By Theorem 2.7, if H ∈ Hom(X,B)

is such that ∥H − eB ⊗ l∥ < 1, then H = eB ⊗ l. The theorem follows.

As it turns out, there exist totally isolated homomorphisms different from fundamen-
tal homomorphisms. With a view to revealing such homomorphisms, we next establish,
in Theorem 2.16 below, a general result facilitating identification of totally isolated ho-
momorphisms.

Lemma 2.15. Let A be a unital normed algebra, let X be a normed space, and let x∗ ∈ X∗

be such that ∥x∗∥ = 1. If e is an idempotent in A such that ∥e⊗ x∗ − eA ⊗ x∗∥ < 1, then
e = eA.
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Proof. Note that

∥e⊗ x∗ − eA ⊗ x∗∥ = ∥e− eA∥ ∥x∗∥ = ∥e− eA∥.

Hence, by assumption, ∥e− eA∥ < 1. As e is idempotent, we have ∥en − eA∥ = ∥e− eA∥
for each n ∈ N. Thus supn∈N ∥en − eA∥ < 1, and now an application of Proposition 2.9
ensures that e = eA.

Theorem 2.16. Let X be a normed algebra, and let ϕ be a character on X with ∥ϕ∥ = 1.
Suppose, moreover, that X has the following property:

(Pϕ) if B is a unital normed algebra and H ∈ Hom(X,B) is such that ∥H−eB⊗ϕ∥ < 1,
then there exists an idempotent e in B such that H = e⊗ ϕ.

Then, for every unital normed algebra A, eA ⊗ ϕ is totally isolated.

We remark that when X is unital, the assumption ∥ϕ∥ = 1 is automatically satisfied.
In general, however, only the inequality ∥ϕ∥ ≤ 1 holds—the value of ∥ϕ∥ can in fact turn
out to be smaller than any given positive number (see, e.g., [15, p. 78]).

Proof of Theorem 2.16. Let A be a unital normed algebra. Suppose that B is a unital
normed algebra and that I : A → B is an isometric homomorphism with I(eA) = eB.
Then I ◦ (eA ⊗ ϕ) = eB ⊗ ϕ, and, to complete the proof, it suffices to show that, if
H ∈ Hom(X,B) is such that

∥H − eB ⊗ ϕ∥ < 1, (2.2)

then H = eB ⊗ ϕ. So, suppose that H ∈ Hom(X,B) obeys (2.2). By invoking prop-
erty (Pϕ), we deduce that there exists an idempotent e in B such that H = e⊗ ϕ. Now
(2.2) can be restated as ∥e ⊗ ϕ − eB ⊗ ϕ∥ < 1. Using the assumption that ∥ϕ∥ = 1

and applying Lemma 2.15, we conclude that e = eB. In other words, H = eB ⊗ ϕ, as
required.

We next exhibit a wide class of essentially accessible homomorphisms and give, as a
consequence, a characterisation of totally isolated homomorphisms. We start by recalling
a definition.

Let A be a unital normed algebra. For each x ∈ A, let Lx be the operator in L (A)

given by
Lxy = xy (y ∈ A).

It is readily verified that the mapping

L : A → L (A), x 7→ Lx,

is a homomorphism from A into L (A). It is standard to term L the left regular repre-
sentation of A on A. The homomorphism L is isometric: it is clear that, for all x ∈ A,
∥Lx∥ ≤ ∥x∥, and, as LxeA = x, we in fact have ∥Lx∥ = ∥x∥. Moreover, L is unital: the
equality L(eA) = IA holds. With these attributes, L is well suited to play the role of an
isometric homomorphism required to establish essential accessibility of a homomorphism.

Theorem 2.17. Let X be a normed algebra, and let A be a unital normed algebra. If
H ∈ Hom(X,A) is not scalar, then H is essentially accessible.
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Proof. Suppose that H ∈ Hom(X,A) is not scalar. We shall show that the composition
L ◦H can be approximated by members of Hom(X,L (A)) different from L ◦H.

By assumption, there exists x0 ∈ X such that H(x0) is not a scalar multiple of eA.
Consequently, LH(x0) is not a scalar multiple of IA. Applying a standard result from
operator theory (see, e.g., [13, Lemma 1]), we deduce that LH(x0) is not in the centre
of L (A), i.e., there exists B in L (A) such that LH(x0)B ̸= BLH(x0). Let {ϵn}n∈N be a
sequence of positive numbers, each smaller than ∥B∥−1, such that ϵn → 0 as n → ∞.
Then, for each n ∈ N, the operator

Bn := IA − ϵnB

is invertible, and we can define a homomorphism Hn in Hom(X,L (A)) by setting

Hn(x) = B−1
n LH(x)Bn (x ∈ X).

Since LH(x0) and B do not commute, it follows that Hn(x0) ̸= LH(x0), and hence Hn ̸=
L ◦H for all n ∈ N.

If x ∈ X and if n ∈ N, then

∥LH(x) −B−1
n LH(x)Bn∥ ≤ ∥LH(x) −B−1

n LH(x)∥+ ∥B−1
n LH(x) −B−1

n LH(x)Bn∥
≤ ∥IA −B−1

n ∥ ∥H(x)∥+ ∥B−1
n ∥ ∥H(x)∥ ∥IA −Bn∥.

Hence

∥L ◦H −Hn∥ = sup
∥x∥=1

∥LH(x) −Hn(x)∥

≤ ∥IA −B−1
n ∥ ∥H∥+

(
sup
n∈N

∥B−1
n ∥

)
∥H∥ ∥IA −Bn∥.

Since limn→∞ ∥IA − Bn∥ = limn→∞ ∥IA − B−1
n ∥ = 0, which, in particular, implies that

supn∈N ∥B−1
n ∥ <∞, we conclude that limn→∞ ∥L◦H−Hn∥ = 0. The theorem follows.

Corollary 2.18. Let X be a normed algebra, and let A be a unital normed algebra. If
H ∈ Hom(X,A) is totally isolated, then H is scalar.

In light of this corollary, one might be tempted to think that every scalar homo-
morphism is totally isolated. But this is not the case. We shall soon reveal an ordered
AL-algebra, some of whose scalar homomorphisms are totally isolated, and some are not
(cf. Theorems 4.3 and 4.5). It is also to be noted that zero homomorphisms from or-
dered AL-algebras can be totally isolated in some cases, and accessible in others. Right
below we identify circumstances under which the first eventuality occurs. Later on (see
Section 4.1) we shall give an example of the appearance of the second possibility.

Let X be a normed algebra. A net {uι}ι∈I in X is called a left (respectively, right,
two-sided) approximate identity for X if

lim
ι∈I

∥x− uιx∥ = 0 (respectively, lim
ι∈I

∥x− xuι∥ = 0, lim
ι∈I

(∥x− uιx∥+ ∥x− xuι∥) = 0)

for every x ∈ X. It is said to be bounded if there is K > 0 such that ∥uι∥ ≤ K for all
ι ∈ I; and, in this case, the least such K, supι∈I ∥uι∥, is called the bound of {uι}ι∈I .
A (left, right, two-sided) approximate identity is contractive if it has bound 1. If X is
commutative, we speak just of a (bounded) approximate identity.
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Theorem 2.19. Let X be a normed algebra with a left (right) bounded approximate iden-
tity {uι}ι∈I with bound K, and let A be a normed algebra. If H ∈ Hom(X,A) satisfies
∥H∥ < K−1, then H = 0.

Proof. We confine ourselves to the case where {uι}ι∈I is a left bounded approximate
identity; the other case is handled similarly. Let x ∈ X. Then, for every ι ∈ I and every
n ∈ N,

x− unι x = (un−1
ι + · · ·+ uι + 1)(x− uιx),

so that

∥x− unι x∥ ≤ CK,n∥x− uιx∥,

where CK,n := Kn−1 + · · ·+K + 1. Consequently,

∥H(x)−H(unι x)∥ ≤ ∥H∥CK,n∥x− uιx∥.

Also
∥H(unι x)∥ = ∥H(uι)

nH(x)∥ ≤ ∥H(uι)∥n∥H(x)∥ ≤ (∥H∥K)n∥H(x)∥.

Thus
∥H(x)∥ ≤ ∥H∥CK,n∥x− uιx∥+ (∥H∥K)n∥H(x)∥.

Passing to the limit along the ordered set I, we obtain

∥H(x)∥ ≤ (∥H∥K)n∥H(x)∥.

Letting n → ∞ and using ∥H∥K < 1, we find that H(x) = 0. Now the theorem follows
on account of the arbitrariness of x.

Corollary 2.20. Let X be a normed algebra with a left (right) bounded approximate
identity, and let A be a normed algebra. Then the zero homomorphism from X to A is
totally isolated.

Save one, all the AL-algebras considered henceforth will have a two-sided contractive
approximate identity; and, accordingly, all zero homomorphisms from these algebras will
be totally isolated.

3. Semigroup algebras

A distinctive class of ordered AL-algebras is constituted by the semigroup algebras of
subsemigroups of locally compact groups, where each subsemigroup is Haar measurable,
not locally null, and such that the neutral element of the respective ambient group is a
density point of the subsemigroup. In this chapter, we shall be concerned with isolability
properties of homomorphisms from algebras in this class. The reason for singling out the
said class amongst all semigroup algebras is that then every member algebra is ensured
to possess a contractive two-sided approximate identity.
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3.1. Background. The material of this section is divided into three subsections.

3.1.1. Characters and semi-characters. Let S be a semigroup, with product denoted
by juxtaposition. A semi-character on S (as defined, say, in [39]) is a bounded, complex-
valued function ζ on S, not identically zero, which satisfies ζ(st) = ζ(s)ζ(t) for all s, t ∈ S.
If ζ is a semi-character on S, then, necessarily, |ζ(s)| ≤ 1 for all s ∈ S (cf. [83, Lemma
A.27]). A complex-valued function f on a set A satisfying |f(a)| = 1 for all a ∈ A is said
to be unitary. A character on S is a unitary semi-character on S. The constant function
1S is the trivial character on S.

Let S be a topological semigroup. We denote by Ŝ the set of all continuous semi-
characters on S, and by Ŝu the set of all continuous characters on S. The set of all non-
negative, real-valued, continuous semi-characters on S will be denoted by Ŝ+. Clearly,
Ŝ+ = {|ζ| | ζ ∈ Ŝ}.

Let G be a locally compact Abelian group, and let Ĝ be its Pontryagin dual, that
is, the set of all continuous characters on G, endowed with the compact-open topology;
it forms an Abelian group under the pointwise multiplication of characters. Let S be a
subsemigroup of G. Endowed with the subspace topology, S is a topological semigroup. It
is clear that the restriction of any character in Ĝ to S is a character in Ŝu. A remarkable
converse fact is that:

(i) every character in Ŝu is the restriction to S of some character in Ĝ;
(ii) every semi-character in Ŝ can be represented (generally non-uniquely) as a prod-

uct ρσ, where ρ ∈ Ŝ+ and σ ∈ Ŝu;

see [24, Proposition 4.4]. When S is a closed subgroup of G, and as such is locally compact
in the subspace topology, we have Ŝ = Ŝu; in other words, Ŝ is identical with the dual
group of S (cf. [83, Lemma 3.4]). Note that confining oneself to the consideration of closed
subgroups only is not a restriction here: every locally compact subgroup of a Hausdorff
group is necessarily closed; see [38, Theorem 5.11] or [69, Proposition 1-6].

3.1.2. Semigroup algebras of subsemigroups of locally compact groups. Let
G be a locally compact group. Let mG denote a fixed, but arbitrary, left Haar measure
on G. The group algebra of G, L1(G), is the Banach algebra of equivalence classes of
complex-valued, Haar integrable functions on G, with the norm

∥f∥1 =

∫
G

|f(s)|dmG(s) (f ∈ L1(G))

and with the convolution as multiplication defined by

(f ⋆ g)(s) =

∫
G

f(t)g(t−1s) dmG(t) (f, g ∈ L1(G), a.e. s ∈ G).

If, for real-valued members f and g of L1(G), we define f ≤ g to mean that f(s) ≤ g(s)

for almost every s ∈ G, then L1(G) becomes a Banach lattice. It is elementary to check
that L1(G) is in fact a complex ordered AL-algebra.

We recall that a Haar measurable subset E of G is locally null if mG(E ∩K) = 0 for
each compact subset K of G. This definition does not change if mG in it is replaced by
any positive multiple of mG, or by a right Haar measure on G. A property of points of
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G is said to hold locally almost everywhere if the set of points at which it fails to hold
is locally null. If a Haar measurable subset of G is locally null, then its left (right) Haar
measure is equal either to 0 or to ∞. In the case where G is σ-compact (that is, in the
case where G is a countable union of compact sets), every locally null subset of G has
null left (right) Haar measure. Accordingly, when G is σ-compact, to say that a Haar
measurable subset E of G is not locally null amounts to saying that E has positive left
(right) Haar measure.

Let S be a non-locally-null, Haar measurable subsemigroup of G. The Banach space
L1(S) of equivalence classes of complex-valued, Haar integrable functions on S, with the
norm

∥f∥1 =

∫
S

|f(s)|dmG(s) (f ∈ L1(S)),

is a Banach algebra for the convolution product defined by∫
S

h(f ⋆ g) dmG =

∫
S×S

h(st)f(s)g(t) d(mG ⊗mG)(s, t)

(f, g ∈ L1(S), h ∈ L∞(S)).

Here L∞(S) denotes the Banach space of equivalence classes of essentially bounded,
Haar measurable, complex-valued functions (with functions identified if they are equal
locally almost everywhere) on S. The assumption that S is not locally null ensures that
L1(S) does not reduce to the class of the zero function. An equivalent definition of the
convolution product can be formulated as follows. Given f ∈ L1(S), let f̃ be the element
of L1(G) equal almost everywhere to f on S and almost everywhere to zero outside S.
Then, for f, g ∈ L1(S), the convolution f ⋆ g can be defined as the restriction of f̃ ⋆ g̃
to S. Even more explicitly,

(f ⋆ g)(s) =

∫
S∩sS−1

f(t)g(t−1s) dmG(t) (a.e. s ∈ S), (3.1)

where sS−1 = {st−1 | t ∈ S}. The algebra L1(S) is termed the semigroup algebra of S.
It is readily seen that L1(S) is a complex ordered AL-algebra.

It is worth mentioning that one can also define L1(S) as a vanishing algebra, that
is, a subset of L1(G) which consists of all functions vanishing almost everywhere on the
complement of a Haar-measurable subset of G, and which is closed under convolution.
One can namely put

L1(S) = {f ∈ L1(G) | f(s) = 0 for a.e. s ∈ G \ S};

see, e.g., [24], [53], [55], [56], [57], [70], [79], [80], [81]. Viewed as a vanishing algebra,
L1(S) is a closed subalgebra of L1(G). Here we shall not follow this alternative path.

3.1.3. Semigroup algebras of discrete semigroups. Given a set Γ, let ℓ1(Γ) be
the Banach space of all complex-valued functions f on Γ such that

∑
γ∈Γ |f(γ)| < ∞,

furnished with the norm

∥f∥1 =
∑
γ∈Γ

|f(γ)| (f ∈ ℓ1(Γ)).
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For each γ ∈ Γ, we denote by δγ the characteristic function of {γ} when the latter is
viewed as a member of ℓ1(Γ). One can think of any element f of ℓ1(Γ) as the generalised
sum

∑
γ∈Γ f(γ)δγ , where

∑
γ∈Γ |f(γ)| <∞.

When S is a (discrete) semigroup, ℓ1(S) is a Banach algebra for the convolution
multiplication defined by

δs ⋆ δt = δst (s, t ∈ S).

Thus
(f ⋆ g)(s) =

∑
pr=s
p,r∈S

f(p)g(r) (f, g ∈ ℓ1(S), s ∈ S), (3.2)

where the sum is taken to be 0 when there are no p, r ∈ S with pr = s. The algebra ℓ1(S)
is called the semigroup algebra of S.

When G is a discrete group and the (two-sided) Haar measure on G is counting
measure, L1(G) is the same as ℓ1(G). Moreover, if S is a subsemigroup of G, then S is
obviously not locally null, and the convolution product in ℓ1(S) defined in (3.2) is the
same as the convolution product given in (3.1).

3.2. Semigroup algebras with α-number 1. We now exhibit a class of semigroup
algebras for which the α-number is equal to 1. Three specific algebras in this class will
be the subject of discussion in the next chapter.

Let G be a locally compact group, and let S be a non-locally-null, Haar measurable
subsemigroup of G. Given f ∈ L1(S), the generalised Laplace transform of f is the
function ζ 7→ Lζ(f) on Ŝ defined by

Lζ(f) =

∫
S

f(s)ζ(s) dmG(s) (ζ ∈ Ŝ).

It is standard to verify that, for each ζ ∈ Ŝ, the mapping Lζ : f 7→ Lζ(f) is a character
on L1(S). Conversely, every character on L1(S) coincides with Lζ for some uniquely
determined ζ ∈ Ŝ (cf. [24, Theorem 5.1] or [71, Theorem 13]). It is immediate that L1S

is the fundamental character on L1(S).

Lemma 3.1. Let G be a locally compact group, and let S be a non-locally-null, Haar
measurable subsemigroup of G. If ρ ∈ Ŝ+ \ {1S} and if σ ∈ Ŝu, then ρσ is in Ŝ and
∥Lσ − Lρσ∥ = 1.

Proof. It is clear that ρσ is a homomorphism from S into D, where D is considered as a
semigroup under multiplication. As σ is unitary and ρ is not identically zero, ρσ is not
identically zero. Thus ρσ is in Ŝ.

If f ∈ L1(S), then

|Lσ(f)− Lρσ(f)| ≤
∫
S

|f(s)(1− ρ(s))σ(s)|dmG(s)

=

∫
S

|f(s)|(1− ρ(s)) dmG(s)

≤
∫
S

|f(s)|dmG(s) = ∥f∥1,
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where the equality in the second line follows from σ being unitary and the fact that
0 ≤ ρ(s) ≤ 1 for all s ∈ S. This implies that ∥Lσ − Lρσ∥ ≤ 1.

To prove the reverse inequality, we first claim that the set

E := {s ∈ S | ρ(s) < 1}

is not locally null. For assume that this is false. Then ρ is equal to 1 locally almost
everywhere. Select, arbitrarily, a compact subset C of S with positive (and necessarily
finite) Haar measure. If s ∈ S, then

ρ(s)

∫
C

ρ(t) dmG(t) =

∫
C

ρ(st) dmG(t) =

∫
sC

ρ(t) dmG(t),

where sC = {st | t ∈ C}. Since, in particular, ρ is equal to 1 almost everywhere on C

and on sC, the equality between the leftmost and rightmost expressions above can be
rewritten as

ρ(s)mG(C) = mG(sC).

Now, since mG(sC) = mG(C), we have

ρ(s)mG(C) = mG(C),

and hence ρ(s) = 1. But this contradicts the hypothesis that ρ ̸= 1S . Thus the claim
holds.

For each 0 < r < 1, let
Er := {s ∈ S | ρ(s) ≤ r}.

Since
E =

⋃
r∈(0,1)∩Q

Er

and since E is not locally null, there exists r ∈ (0, 1)∩Q such that Er is not locally null. Let
K be a compact subset of S such that mG(Er∩K) > 0. Since mG(Er∩K) ≤ mG(K) <∞
and since Haar measure is inner regular on Haar measurable sets of finite measure (cf.
[38, Theorem 11.31]), there is a compact subset L of Er ∩K with positive (finite) Haar
measure. Given n ∈ N, let

L(n) = {s1 . . . sn | s1, . . . , sn ∈ L}.

Then L(n) is a compact subset of S. By Steinhaus’ theorem [82] on the Minkowski product
of two sets, L(n) contains an open subset, and hence has positive Haar measure. We recall
that the theorem in question, stated in a form relevant to the present context, asserts
that, if A and B are Haar measurable subsets of a locally compact group, each of positive
finite Haar measure, then AB = {ab | a ∈ A, b ∈ B} has non-empty interior (see [9] and
[38, Theorem 20.17]). Set

fn =
1

mG(L(n))
χL(n) and gn = σfn (n ∈ N).

For each n ∈ N, we have ∥fn∥1 = ∥gn∥1 = 1, and, since ρ(s) ≤ rn whenever s ∈ L(n), we
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also have

Lσ(gn)− Lσρ(gn) =

∫
S

fn(s)(1− ρ(s)) dmG(s)

=
1

mG(L(n))

∫
L(n)

(1− ρ(s)) dmG(s) ≥ 1− rn.

Hence ∥Lσ − Lρσ∥ ≥ 1− rn. Letting n→ ∞, we obtain ∥Lσ − Lρσ∥ ≥ 1, as desired.

Theorem 3.2. Let G be a locally compact group, and let S be a non-locally-null, Haar
measurable subsemigroup of G. Suppose that Ŝ+\{1S} is non-empty. Then α(L1(S)) = 1.

Proof. Let A be a unital normed algebra. Pick ρ ∈ Ŝ+ \{1S}. Then eA⊗Lρ ̸= eA⊗L1S .
Moreover, an application of Lemma 3.1 with σ = 1S yields

∥eA ⊗ L1S − eA ⊗ Lρ∥ = ∥L1S − Lρ∥ = 1.

Hence α(L1(S)) ≤ 1. On the other hand, Theorem 2.7 guarantees that α(L1(S)) ≥ 1.
Combining these two inequalities completes the proof.

3.3. A representation result. We now present a technical result concerning the form
of homomorphisms from semigroup algebras of a certain type. The relevant semigroups
algebras here will be exactly the semigroup algebras described in the opening paragraph
of this chapter.

Let G be a locally compact group. An element s in G is a density point of a Haar
measurable subset A of G if every open neighbourhood of s meets A in a set of positive
Haar measure. The set of all density points of A will be denoted by D(A). Simon [81] has
shown that, if A ⊂ G is Haar measurable, then:

(i) D(A) is closed;
(ii) Ao ⊂ D(A) ⊂ A;
(iii) A \D(A) is locally null.

In the above statement, Ao denotes the interior of A, and A denotes the closure of A.
The same author has further shown that, if S ⊂ G is a Haar measurable semigroup, then
D(S) is also a semigroup. Our interest in density points arises in connection with the
question of the existence of approximate identities for semigroup algebras.

Throughout, for a locally compact group G written multiplicatively (which is done
by default), the neutral element of G will be denoted by eG.

Lemma 3.3. Let G be a locally compact group, and let S be a non-locally-null, Haar mea-
surable subsemigroup of G such that eG ∈ D(S). Then L1(S) has a two-sided approximate
identity {uι}ι∈I such that ∥uι∥ = 1 for each ι ∈ I.

Proof. Let {Vι}ι∈I be a base of precompact (closure is compact) neighbourhoods of eG
in G. This can be viewed as a net directed downward by inclusion. For each ι ∈ I, let

uι =
1

mG(Vι ∩ S)
χVι∩S .

The assumption that eG ∈ D(S) guarantees that the denominator of each fraction is
positive. It is clear that ∥uι∥ = 1 for each ι ∈ I. Also, it is routine to verify that {uι}ι∈I

is a two-sided approximate identity for L1(S) (cf. [66, pp. 528–529]). Incidentally, checking



Isolated points of spaces of homomorphisms 25

that {uι}ι∈I is a right approximate identity is somewhat more involved than checking
that {uι}ι∈I is a left approximate identity, as it requires the use of the modular function
relating right Haar measure to left Haar measure.

Let A be a topological space. A family {F (a)}a∈A of bounded linear operators on a Ba-
nach space X is strongly continuous if, for each x ∈ X, the function A ∋ a 7→ F (a)x ∈ X

is continuous in norm.
Let S be a semigroup. In the case where S is unital, the neutral element of S is

denoted by eS . Let A be a unital algebra. An A-valued family {S (s)}s∈S is a semigroup
in A if:

(i) S (s)S (t) = S (st) for all s, t ∈ S;
(ii) S (eS) = eA whenever S is unital.

An L (X)-valued semigroup, where X is a non-zero normed space, is called a semigroup
on X.

Let G be a locally compact group. Suppose that S is a non-locally-null, Haar mea-
surable subsemigroup of G. Given s ∈ S, we denote by Ss the operator of right shift by
s on L1(S), defined by

(Ssf)(t) =

{
f(s−1t) for a.e. t ∈ sS,
0 for a.e. t ∈ S \ sS

(f ∈ L1(S)).

It is straightforward to verify that the family {Ss}s∈S is a strongly continuous semigroup
on L1(S) and, moreover, that

Ss(f ⋆ g) = Ssf ⋆ g (3.3)

holds for all s ∈ S and all f, g ∈ L1(S).
Given a mapping f : A→ B, where A and B are sets, we denote by Ran(f) the range

of f .
Let X be a normed space. Given S ∈ L (X) and a linear subspace Y ⊂ X such that

S(Y ) ⊂ Y , we denote by S↾Y the restriction of S to Y , that is, the linear operator in
L (Y ) defined by

(S↾Y )y = Sy (y ∈ Y ).

Given a mapping f : A → L (X), where A is a set, and a linear subspace Y ⊂ X such
that (f(a))(Y ) ⊂ Y for each a ∈ A, we denote by f↾Y the mapping

f↾Y : A→ L (Y ), a 7→ f(a)↾Y .

It will be now convenient to make two remarks on what is essentially a matter of
disentangling and clarifying notation, one aiming at immediate, and the other at post-
poned use. Let X be a normed algebra, and let A be a unital normed algebra. Let L
continue to denote the left regular representation of A on A. First, suppose that H is a
homomorphism in Hom(X,A). Then(

(L ◦H)(x)
)
H(y) = LH(x)H(y) = H(x)H(y) = H(xy)

for all x, y ∈ X. This shows that(
(L ◦H)(x)

)
(Ran(H)) ⊂ Ran(H)
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for each x ∈ X, and we may therefore consider the mapping

(L ◦H)↾Ran(H) : X → L (Ran(H)).

It is immediate that (
(L ◦H)↾Ran(H)

)
(x)z = H(x)z

for each x ∈ X and each z ∈ Ran(H).
Second, suppose that ϕ is a functional in ∆(X) and that Y is a linear subspace of A.

Then (
L ◦ (eA ⊗ ϕ)

)
(x)y = L(eA⊗ϕ)(x)y = (eA ⊗ ϕ)(x)y = ϕ(x)y

for each x ∈ X and each y ∈ Y . This implies that((
L ◦ (eA ⊗ ϕ)

)
(x)

)
(Y ) ⊂ Y

for each x ∈ X, and we may meaningfully consider the mapping

(L ◦ (eA ⊗ ϕ))↾Y : X → L (Y ).

It is clear that (
(L ◦ (eA ⊗ ϕ))↾Y

)
(x)y = ϕ(x)y

for each x ∈ X and each y ∈ Y .
We are ready to present the main result of this section. This result is inspired by the

work of Kisyński on the so-called algebraic version of the Hille–Yosida theorem (cf. [48,
Theorems 4.2 and 5.5], [49, Theorems 10.2 and 12.5], and also [16, Theorems 3.3 and 4.1]).

Proposition 3.4. Let G be a locally compact group, let S be a non-locally-null, Haar
measurable subsemigroup of G such that eG ∈ D(S), and let A be a unital normed algebra.
Let H : L1(S) → A be a non-zero, continuous homomorphism. Then:

(i) there exists a unique semigroup S = {S (s)}s∈S on Ran(H) such that

S (s)H(f) = H(Ssf) (3.4)

for each s ∈ S and each f ∈ L1(S); the semigroup S is strongly continuous and
satisfies sups∈S ∥S (s)∥ ≤ ∥H∥;

(ii) if {uι}ι∈I is a left approximate identity for L1(S), then

S (s)x = lim
ι∈I

H(Ssuι)x (3.5)

for each s ∈ S and each x ∈ Ran(H);
(iii) with L denoting the left regular representation of A, the mapping (L ◦ H)↾Ran(H)

admits the representation(
(L ◦H)↾Ran(H)

)
(f)x =: H(f)x =

∫
S

f(s)S (s)xdmG(s) (3.6)

for each f ∈ L1(S) and each x ∈ Ran(H).

Proof. (i) First note that since H is non-zero, so too is Ran(H). Next, given s ∈ S, define
a linear operator S (s) on Ran(H) by

S (s)H(f) = H(Ssf) (f ∈ L1(S)).
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To check that the above definition is correct, we need to show that, if f, g ∈ L1(S) are
such that H(f) = H(g), then

H(Ssf) = H(Ssg). (3.7)

Choose a left approximate identity {uι}ι∈I for L1(S); that this can be done is ensured
by Lemma 3.3. Note that

H(Ssuι)H(f) = H(Ssuι)H(g)

for all ι ∈ I. Hence
lim
ι∈I

H(Ssuι)H(f) = lim
ι∈I

H(Ssuι)H(g) (3.8)

provided that the limits exist. In view of (3.3),

H(Ssuι)H(f) = H(Ssuι ⋆ f) = H(Ss(uι ⋆ f))

for each ι ∈ I. Therefore
lim
ι∈I

H(Ssuι)H(f) = lim
ι∈I

H(Ss(uι ⋆ f)) = H(lim
ι∈I

Ss(uι ⋆ f))

= H
(
Ss

(
lim
ι∈I

(uι ⋆ f)
))

= H(Ssf). (3.9)

Likewise
lim
ι∈I

H(Ssuι)H(g) = H(Ssg). (3.10)

Putting (3.8)–(3.10) together yields (3.7), as required.
To proceed further, we refine our choice of the left approximate identity for L1(S)

and now suppose that {uι}ι∈I satisfies ∥uι∥1 ≤ 1 for each ι ∈ I; here again Lemma 3.3
ensures the feasibility of such a refinement. If s ∈ S and if f ∈ L1(S), then

∥H(Ssuι)H(f)∥ ≤ ∥H(Ssuι)∥ ∥H(f)∥ ≤ ∥H∥ ∥Ssuι∥1∥H(f)∥ ≤ ∥H∥ ∥H(f)∥

for each ι ∈ I. Hence, by (3.9),

∥H(Ssf)∥ ≤ ∥H∥ ∥H(f)∥,

and this implies that S (s) is bounded, with norm no greater than ∥H∥. Consequently,
sups∈S ∥S (s)∥ ≤ ∥H∥.

Using the semigroup property of {Ss}s∈S , one verifies at once that {S (s)}s∈S is a
semigroup on Ran(H). The strong continuity of S follows immediately from the strong
continuity of {Ss}s∈S , and the uniqueness of S follows immediately from the defining
property of (3.4).

(ii) Formula (3.5) is a restatement of (3.9).
(iii) Let f, g ∈ L1(S). The function S ∋ s 7→ Ssg ∈ L1(S) is continuous, and the

function S ∋ s 7→ f(s)Ssg ∈ L1(S) is dominated in norm by the non-negative Haar
integrable function s 7→ |f(s)| ∥g∥1. Therefore the function S ∋ s 7→ f(s)Ssg ∈ L1(S) is
Bochner integrable. It is readily verified that∫

S

f(s)Ssg dmG(s) = f ⋆ g,

where the integral is understood as a Bochner integral. Let B be the Banach algebra
completion of Ran(H). Using the interchangeability of the Bochner integral with bounded
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linear operators (cf. [97, p. 134, Corollary 2]), we have∫
S

f(s)S (s)H(g) dmG(s) =

∫
S

f(s)H(Ssg) dmG(s) = H

(∫
S

f(s)Ssg dmG(s)

)
= H(f ⋆ g) = H(f)H(g),

where the leftmost term is a priori a Bochner integral with values in B, but in fact is a
member of Ran(H), as the first equality in the second line attests. This establishes (3.6).

3.4. Applications. We now use the material from the last and previous sections to
discuss isolability properties of homomorphisms.

The following is our key result.

Theorem 3.5. Let G be a locally compact group, let S be a non-locally-null, Haar mea-
surable subsemigroup of G such that eG ∈ D(S), and let A be a unital normed algebra. If
σ ∈ Ŝu and if H : L1(S) → A is a continuous homomorphism such that ∥H−eA⊗Lσ∥ < 1,

then H = eA ⊗ Lσ.

Proof. The proof is divided into two steps. The first step shows that the homomorphisms
(L◦H)↾Ran(H) and (L◦(eA⊗Lσ))↾Ran(H), where L denotes the left regular representation
of A, coincide. The second step upgrades the result of the first step to the equality of H
and eA ⊗ Lσ.

Step 1. Since ∥Lσ∥ = ∥σ∥∞ = 1, where ∥ · ∥∞ denotes the uniform norm (on G), we
have ∥eA ⊗ Lσ∥ = ∥eA∥ ∥Lσ∥ = 1; and since ∥H − eA ⊗ Lσ∥ < 1 by assumption, we see
that H is non-zero. Select a contractive two-sided approximate identity {uι}ι∈I for L1(S);
this—we recall—can done by appealing to Lemma 3.3. Let {S (s)}s∈S be the semigroup
on Ran(H) whose existence is asserted in Proposition 3.4. If s ∈ S, if x ∈ Ran(H), and
if ι ∈ I, then

∥H(Ssuι)x− (eA ⊗ Lσ)(Ssuι)x∥ ≤ ∥H − eA ⊗ Lσ∥ ∥Ssuι∥1∥x∥
≤ ∥H − eA ⊗ Lσ∥ ∥x∥. (3.11)

Since σ is continuous, we have limι∈I Lσ(Ssuι) = σ(s), and so

lim
ι∈I

(eA ⊗ Lσ)(Ssuι)x = σ(s)x.

Combining this with (3.5), we deduce from (3.11) that

∥S (s)x− σ(s)x∥ ≤ ∥H − eA ⊗ Lσ∥ ∥x∥.

Bearing in mind that σ is unitary, we further conclude that

∥σ(s)S (s)x− x∥ ≤ ∥H − eA ⊗ Lσ∥ ∥x∥.

Hence
sup
s∈S

∥σ(s)S (s)− IRan(H)∥ ≤ ∥H − eA ⊗ Lσ∥.

This together with the assumption that ∥H − eA ⊗ Lσ∥ < 1 yields

sup
s∈S

∥σ(s)S (s)− IB∥ < 1.



Isolated points of spaces of homomorphisms 29

An application of Proposition 2.9 now implies that σ(s)S (s) = IRan(H) for all s ∈ S.
Hence, immediately, S (s) = σ(s)IRan(H) for all s ∈ S, and further, by (3.6),

H(f)x = Lσ(f)x (3.12)

for all f ∈ L1(S) and all x ∈ Ran(H). Note that the latter equality can be phrased as
the equality of (L ◦H)↾Ran(H) and (L ◦ (eA ⊗ Lσ))↾Ran(H).

Step 2. If f ∈ L1(S), then

lim
ι∈I

H(f)H(uι) = lim
ι∈I

H(f ∗ uι) = H(f).

For each ι ∈ I, putting x = H(uι) in (3.12) yields

H(f)H(uι) = Lσ(f)H(uι).

Therefore
H(f) = lim

ι∈I
Lσ(f)H(uι). (3.13)

Choose g ∈ L1(S) so that Lσ(g) ̸= 0; the existence of such g follows, for example,
from the observation that limι∈I Lσ(Ssuι) = σ(s) ̸= 0 for any s ∈ S. Taking f in (3.13)
to be g, we find that the limit

e := lim
ι∈I

H(uι)

exists and is given by
e = (Lσ(g))

−1H(g).

This last representation shows, notably, that e is a member of Ran(H). Note that e will
not change if g is replaced by any other function h ∈ L1(S) satisfying Lσ(h) ̸= 0. In
particular, given that Lσ(g ∗ g) = (Lσ(g))

2 ̸= 0, we may use g ∗ g in place of g. But

(Lσ(g ∗ g))−1H(g ∗ g) = ((Lσ(g))
2)−1(H(g))2 =

(
(Lσ(g))

−1H(g)
)2
,

and this means that e is an idempotent. Since (3.13) can be written as

H(f) = Lσ(f)e = (e⊗ Lσ)(f)

for each f ∈ L1(S), we have H = e ⊗ Lσ. Taking into account that the assumption
about H can now be reformulated as ∥e ⊗ Lσ − eA ⊗ Lσ∥ < 1, and that ∥Lσ∥ = 1, we
deduce from Lemma 2.15 that e = eA. Hence, finally, H = eA ⊗ Lσ.

Remark 3.6. In general, the inequality ∥H − eA ⊗ Lσ∥ < 1 in Theorem 3.5 is optimal
and cannot be replaced by the weaker inequality ∥H−eA⊗Lσ∥ ≤ 1. This stems from the
fact that there always exists H ∈ Hom(L1(S),A) obeying ∥H− eA⊗Lσ∥ = 1, and hence
also differing from eA ⊗ Lσ. One such H is the zero homomorphism from L1(S) into A

(cf. Theorem 2.7). Remarkably, H may be non-zero and satisfy ∥H − eA⊗Lσ∥ = 1. This
follows from the following observation: if S is a subsemigroup of G such that Ŝ+ \ {1S}
is non-empty, then, for every ρ ∈ Ŝ+ \ {1S} and every σ ∈ Ŝu, we have Lρσ ̸= Lσ, and,
by Lemma 3.1,

∥eA ⊗ Lρσ − eA ⊗ Lσ∥ = ∥Lρσ − Lσ∥ = 1.

Specific examples of semigroups S satisfying the assumptions of Theorem 3.5 and such
that Ŝ+ \ {1S} ≠ ∅ include Z+, R+

d , and R+. See the next chapter for details.
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Our next theorem reveals totally isolated homomorphisms that are different from
fundamental homomorphisms.

Theorem 3.7. Let G be a locally compact group, let S be a non-locally-null, Haar mea-
surable subsemigroup of G such that eG ∈ D(S), and let A be a unital normed algebra. If
σ ∈ Ŝu, then eA ⊗ Lσ : L

1(S) → A is totally isolated.

The theorem immediately follows from Theorem 3.5 by adapting the argument from
the proof of Theorem 2.14; or, optionally, by combining Theorem 3.5 with Theorem 2.16
and the fact that ∥Lσ∥ = 1 for all σ ∈ Ŝu.

4. Special cases

In this chapter, we shall deal with three specific semigroup algebras and their homomor-
phisms. Two of these algebras will be the semigroup algebras of discrete semigroups.

4.1. The algebra ℓ1(Z+). Consider Z+ as a semigroup under addition. The semigroup
algebra of Z+, ℓ1(Z+), can be explicitly described as the algebra of all complex-valued,
summable sequences {f(n)}n∈Z+ , with the norm

∥f∥ =

∞∑
n=0

|f(n)| (f ∈ ℓ1(Z+))

and the convolution product

(f ⋆ g)(n) =

n∑
m=0

f(n−m)g(m) (f, g ∈ ℓ1(Z+), n ∈ Z+).

In preparation for the subsequent discussion, we begin by characterising the semi-char-
acters on Z+. For each z ∈ D, the mapping ζz : Z+ → D given by

ζz(n) = zn (n ∈ Z+)

is a semi-character on Z+. Conversely, every semi-character on Z+ takes the form ζz
for some z ∈ D. In other words, Ẑ+ = {ζz | z ∈ D}. Here, by convention, 00 = 1,
so that ζ0 is identical with χ{0}. It is readily seen that (Ẑ+)u = {ζz | z ∈ T} and
(Ẑ+)+ = {ζr | 0 ≤ r ≤ 1}. In particular, the set (Ẑ+)+ \ {1Z+}, which coincides with
{ζr | 0 ≤ r < 1}, is not empty.

Keeping in line with the standard notation, for each z ∈ D, we abbreviate Lζz to Lz.
Thus

Lz(f) =
∞∑

n=0

f(n)zn (f ∈ ℓ1(Z+)).

Treating Z+ as a subsemigroup of the additive group Z of integers and bearing in mind
Theorems 3.2 and 3.5, Remark 3.6, and Theorem 3.7, we readily obtain the following
results.

Theorem 4.1. We have α(ℓ1(Z+)) = 1.
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Theorem 4.2. Let A be a unital normed algebra. If z ∈ T and if H : ℓ1(Z+) → A is a
continuous homomorphism such that ∥H − eA ⊗Lz∥ < 1, then H = eA ⊗Lz. Moreover,
the above assertion fails in general if ‘<’ is replaced by ‘≤’.

Theorem 4.3. Let A be a unital normed algebra. If z ∈ T, then eA ⊗ Lz : ℓ
1(Z+) → A

is totally isolated.

To obtain further results, we need a lemma (cf. [13, proof of Theorem 7]).

Lemma 4.4. If 0 < r < 1, then

lim
ρ→r

sup
s≥0

|rs − ρs| = 0.

Proof. Fix 0 < r < 1. If 0 < ρ < r, then, as is easily checked, the function s 7→ rs − ρs,
s ≥ 0, is non-negative and attains its maximum at

sρ,r =
ln ln 1

ρ − ln ln 1
r

ln 1
ρ − ln 1

r

.

Since limρ→r sρ,r = 1/(ln(1/r)), we see that the expression

sup
s≥0

(rs − ρs) = rsρ,r − ρsρ,r

converges to 0 as ρ tends to r from the left; in symbols,

lim
ρ↗r

sup
s≥0

(rs − ρs) = 0.

A similar argument shows that

lim
ρ↘r

sup
s≥0

(ρs − rs) = 0.

The lemma follows.

Theorem 4.5. Let A be a unital normed algebra. If e is a non-zero idempotent in A and
if z ∈ D, then e⊗ Lz : ℓ

1(Z+) → A is accessible.

Proof. Write z as z = ru, where r = |z| and |u| = 1; when z ̸= 0, we have u = z/|z|, and
when z = 0, we take u = 1. Let {rn}n∈N be a sequence in the open unit interval (0, 1)
such that rn ̸= r for each n ∈ N and limn→∞ rn = r. Then, clearly, e ⊗ Lrnu ̸= e ⊗ Lz

for all n ∈ N. Moreover,

∥e⊗ Lz − e⊗ Lrnu∥ = ∥e∥ ∥Lz − Lrnu∥ = ∥e∥ ∥ sup
k∈Z+

|rk − rkn| (4.1)

for all n ∈ N. It is now easy to see that

lim
n→∞

∥e⊗ Lz − e⊗ Lrnu∥ = 0. (4.2)

Indeed, if z ̸= 0, then 0 < r < 1, and the above equality follows from Lemma 4.4 combined
with (4.1). And if z = 0, then r = 0, so that, necessarily, limn→∞ rn = 0 and

sup
k∈Z+

|rk − rkn| = sup
k∈N

|rk − rkn| = sup
k∈N

rkn = rn

for each n ∈ N, implying further that

lim
n→∞

sup
k∈Z+

|rk − rkn| = 0;
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now (4.2) follows by combining the above equality with (4.1). We see that {e⊗Lrnu}n∈N
has all properties needed to ascertain the accessibility of e⊗ Lz.

We are now in a position to give the following characterisation of continuous homo-
morphisms from ℓ1(Z+).

Theorem 4.6. Let A be a unital normed algebra. If H : ℓ1(Z+) → A is a continuous
homomorphism, then either:

(i) H = 0 or H = eA ⊗ Lz for some z ∈ T, in which cases H is totally isolated; or
(ii) H is essentially accessible.

Proof. Corollary 2.20 and Theorem 4.3 guarantee that H is totally isolated when H = 0

or when H = eA⊗Lz for some z ∈ T. If H is non-zero and not of the form eA⊗Lz with
z ∈ T, then either H = eA ⊗ Lz for some z ∈ D or H is not scalar. In the first case H is
essentially accessible (in fact accessible) by Theorem 4.5, and in the second case H is
essentially accessible by Theorem 2.17.

At this stage it will be convenient to return to the question mentioned at the end of
Section 2.5 and reveal an ordered AL-algebra admitting accessible zero homomorphisms.
Consider N as a semigroup under addition. The corresponding semigroup algebra ℓ1(N)
can be identified with the closed ideal {f ∈ ℓ1(Z+) | f(0) = 0} of ℓ1(Z+) and inherits
from ℓ1(Z+) the structure of an ordered AL-algebra.

Theorem 4.7. If A is a non-zero normed algebra, then the zero homomorphism from
ℓ1(N) to A is accessible.

Proof. For each a ∈ A with ∥a∥ ≤ 1, define a mapping Ha : ℓ
1(N) → A by

Ha(f) =

∞∑
n=1

f(n)an (f = {f(n)}n∈N ∈ ℓ1(N)).

It is readily seen that Ha is a continuous homomorphism such that ∥Ha∥ ≤ ∥a∥ and
such that Ha ̸= 0 whenever a ̸= 0. Let {an}n∈N be a sequence of non-zero elements of A
such that ∥an∥ ≤ 1 for all n ∈ N and limn→∞ an = 0. Then Han ̸= 0 for all n ∈ N and
limn→∞ ∥Han

∥ = 0. This establishes the theorem.

Remark. Theorems 2.19 and 4.7 immediately imply that ℓ1(N) does not have a bounded
approximate identity. But in fact more is true: ℓ1(N) does not have any approximate
identity. A simple argument to establish this is based on the observation that (f⋆g)(1) = 0

for all f, g ∈ ℓ1(N). In light of it,

|f(1)| = |f(1)− (e ⋆ f)(1)| ≤ ∥e ⋆ f − f∥1
for all e, f ∈ ℓ1(N). Thus if f ∈ ℓ1(N) is such that f(1) ̸= 0, then there is no e ∈ ℓ1(N)
satisfying ∥f − e ⋆ f∥1 < |f(1)|. It is clear that this very occurrence prevents ℓ1(N) from
having an approximate identity. See also [21, p. 308] for a slightly different, though similar
argument.

4.2. The algebra ℓ1(R+). Consider R+ as a semigroup, and R as a group, both under
addition. We shall use the symbol R+

d to denote R+ equipped with the discrete topology;
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likewise for Rd. The semigroup algebra of R+
d , ℓ1(R+), can be explicitly described as the

algebra of all functions f : R+ → C such that
∑

s≥0 |f(s)| <∞, with the norm

∥f∥1 =
∑
s≥0

|f(s)| (f ∈ ℓ1(R+))

and the convolution product

(f ⋆ g)(t) =
∑

0≤s≤t

f(s− t)g(t) (f, g ∈ ℓ1(R+), t ≥ 0).

The semi-characters on R+
d can be characterised as follows. First, the restriction of every

character on Rd to R+ is a character on R+
d . Second, conversely, every character on R+

d

can be extended in a unique way to a character on Rd (see, e.g., [36, Proposition 3.5.3]).
As a result, the set (R̂+

d )u can be identified with the dual group R̂d of Rd. The group R̂d

is usually referred to as the Bohr compactification of R, and is denoted by bR (see, e.g.,
[32, Sect. 4.7] or [72, Sect. 1.8]). Mindful of this, we can put the point just made as
follows: (R̂+

d )u is naturally identifiable with bR. Hereafter we shall use the notation bR
to mean (R̂+

d )u.
A simple argument shows that χ{0}, viewed as a function on R+, is the only semi-

character onR+
d which attains the value zero at some point inR+—all other semi-characters

on R+
d do not vanish anywhere on R+ (see, e.g., [36, Example 3.4.15]). It is also immediate

that, for each 0 ≤ r ≤ 1, the mapping s 7→ rs, s ≥ 0, is a semi-character in (R̂+
d )+. Here,

we retain the convention that 00 = 1, so that the function s 7→ 0s is identical with χ{0}.
A more involved fact is that, conversely, every semi-character in (R̂+

d )+ is of the form
s 7→ rs for some 0 ≤ r ≤ 1 (see, e.g., the proof of Proposition 3.5.11 in [36]).

Given 0 ≤ r ≤ 1 and χ ∈ bR, let r ⋄ χ : R̂+
d → D be the mapping defined by

(r ⋄ χ)(s) = rsχ(s) (s ∈ R+).

For each 0 ≤ r ≤ 1 and each χ ∈ bR, r ⋄ χ is a semi-character on R+
d . It is clear that

r⋄1R+ is the same as the mapping s 7→ rs for each 0 < r ≤ 1. Accordingly, we can restate
the characterisation of (R̂+

d )+ given above as

(R̂+
d )+ = {r ⋄ 1R+ | 0 ≤ r ≤ 1}.

In particular, the set (R̂+
d )+ \ {1R+} is not vacuous.

If ζ is a semi-character on R+
d different from χ{0}, then, given that ζ does not vanish

anywhere on R+, ζ can be uniquely written as u|ζ|, where u ∈ bR and |ζ| ∈ (R̂+
d )+.

Consequently,
R̂+

d \ {χ{0}} = {r ⋄ χ | 0 < r ≤ 1, χ ∈ bR}.

This leads to the following representation of R̂+
d :

R̂+
d = {χ{0}} ∪ {r ⋄ χ | 0 < r ≤ 1, χ ∈ bR}.

In the literature, R̂+
d is often referred to as the big disc over bR or simply the big disc [7],

[36], [84]. The “centre” of the big disc is χ{0}, its “circumference” is bR, and its “radius”
is equal to 1.
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If ζ ∈ R̂+
d , then the functional Lζ is explicitly given by

Lζ(f) =
∑
s≥0

f(s)ζ(s) (f ∈ ℓ1(R+)).

Treating R+
d is a subsemigroup of Rd and bearing in mind Theorems 3.2 and 3.5,

Remark 3.6, and Theorem 3.7, we immediately deduce the following results.

Theorem 4.8. We have α(ℓ1(R+)) = 1.

Theorem 4.9. Let A be a unital normed algebra. If χ ∈ bR and if H : ℓ1(R+) → A is a
continuous homomorphism such that ∥H − eA ⊗Lχ∥ < 1, then H = eA ⊗Lχ. Moreover,
the above assertion fails in general if ∥H−eA⊗Lχ∥ < 1 is replaced by ∥H−eA⊗Lχ∥ ≤ 1.

Theorem 4.10. Let A be a unital normed algebra. If χ ∈ bR, then eA⊗Lχ : ℓ
1(R+) → A

is totally isolated.

Theorems 4.9 and 4.10 are naturally complemented by the two results presented next.

Theorem 4.11. Let A be a unital normed algebra. If H : ℓ1(R+) → A is a continuous
homomorphism such that ∥H − eA ⊗ Lχ{0}∥ < 1, then H = eA ⊗ Lχ{0} . Moreover, the
above assertion fails in general if ‘<’ is replaced by ‘≤’.

Proof. Let r := ∥H − eA ⊗ Lχ{0}∥. By assumption, r < 1. If s > 0, then Lχ{0}(δs) = 0

and ∥δs∥1 = 1, and so

∥H(δs)∥ = ∥(H − eA ⊗ Lχ{0})(δs)∥ ≤ ∥H − eA ⊗ Lχ{0}∥ ∥δs∥1 = r.

Now, for each s > 0 and each n ∈ N,

H(δs) = H(δs/n ⋆ · · · ⋆ δs/n) = (H(δs/n))
n,

and further, by the inequality in the previous sentence,

∥H(δs)∥ ≤ ∥H(δs/n)∥n ≤ rn.

By letting n→ ∞, we find that H(δs) = 0 for each s > 0. It follows that H = e⊗Lχ{0} ,
where e = H(δ0). Since δ0 is idempotent, so too is its homomorphic image e. Now, as
∥Lχ{0}∥ = ∥χ{0}∥∞ = 1, we can apply Lemma 2.15 to conclude that e = eA. Hence, at
once, H = eA ⊗ Lχ{0} .

Finally, to see that ‘<’ in the hypothesis of the theorem cannot be replaced by ‘≤’,
note that eA ⊗ L1R+

̸= eA ⊗ Lχ{0} and

∥eA ⊗ L1R+
− eA ⊗ Lχ{0}∥ = ∥1R+ − χ{0}∥∞ = 1.

Using Theorem 4.11 and adapting the argument from the proof of Theorem 2.14 (or
alternatively, but a bit convolutedly, using Theorems 4.11 and 2.16 and the fact that
∥Lχ{0}∥ = 1), we obtain the following result.

Theorem 4.12. Let A be a unital normed algebra. Then eA ⊗ Lχ{0} : ℓ
1(R+) → A is

totally isolated.

Our next result reveals accessible scalar homomorphisms from ℓ1(R+).

Theorem 4.13. Let A be a unital normed algebra. If e is a non-zero idempotent in A, if
0 < r < 1, and if χ ∈ bR, then e⊗ Lr⋄χ : ℓ

1(R+) → A is accessible.
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Proof. Let {rn}n∈N be a sequence in (0, 1) such that rn ̸= r for each n ∈ N and
limn→∞ rn = r. Clearly, e⊗ Lrn⋄χ ̸= e⊗ Lr⋄χ for all n ∈ N. Moreover, since

∥e⊗ Lr⋄χ − e⊗ Lrn⋄χ∥ = ∥e∥∥Lr⋄χ − Lrn⋄χ∥ = ∥e∥∥ sup
s≥0

|rs − rsn|

for all n ∈ N, it follows from Lemma 4.4 that limn→∞ ∥e ⊗ Lr⋄χ − e ⊗ Lrn⋄χ∥ = 0.

Thus {e⊗Lrn⋄χ}n∈N has both of the properties needed to guarantee the accessibility of
e⊗ Lr⋄χ.

We can now give the following characterisation of continuous homomorphisms
from ℓ1(R+).

Theorem 4.14. Let A be a unital normed algebra. If H : ℓ1(R+) → A is a continuous
homomorphism, then either:
(i) H = 0, or H = eA ⊗ Lχ for some χ ∈ bR, or H = eA ⊗ Lχ{0} , in each of which

cases H is totally isolated; or
(ii) H is essentially accessible.

Proof. Corollary 2.20 and Theorems 4.10 and 4.12 guarantee that H is totally isolated
when H = 0, or when H = eA ⊗ Lχ for some χ ∈ bR, or when H = eA ⊗ Lχ{0} . If H is
non-zero, different from eA ⊗ Lχ for every χ ∈ bR, and different from eA ⊗ Lχ{0} , then
either H = eA⊗Lr⋄χ for some 0 < r < 1 and some χ ∈ bR, or H is not scalar. In the first
case H is essentially accessible (in fact accessible) by Theorem 4.13, and in the second
case H is essentially accessible by Theorem 2.17.

4.3. The algebra L1(R+). Consider R+ with its usual topology. With R+ viewed as a
(Lebesgue) measurable subsemigroup of R, the semigroup algebra of R+ is the same as the
algebra L1(R+) introduced in the Introduction. Let us briefly discuss the semi-characters
on R+. For each z ∈ C+, the mapping ϵz : R+ → D given by

ϵz(s) = e−zs (s ∈ R+)

is a semi-character on R+. Conversely, every semi-character on R+ takes the form ϵz for
some z ∈ C+. In other words, R̂+ = {ϵz | z ∈ C+}. It is readily seen that (R̂+)u = {ϵz |
z ∈ iR} and (R̂+)+ = {ϵr | 0 ≤ r < ∞}. In particular, the set (R̂+)+ \ {1R+}, which
coincides with {ϵr | 0 < r <∞}, is not empty.

Henceforth, for each z ∈ C+, we shall abbreviate Lϵz to Lz, so that

Lz(f) =

∫ ∞

0

f(s)e−zs ds (f ∈ L1(R+)).

Treating R+ as a subsemigroup of R and bearing in mind Theorems 3.2 and 3.5,
Remark 3.6, and Theorem 3.7, we readily obtain the following results.

Theorem 4.15. We have α(L1(R+)) = 1.

Theorem 4.16. Let A be a unital normed algebra. If z ∈ iR and if H : L1(R+) → A is a
continuous homomorphism such that ∥H − eA ⊗Lz∥ < 1, then H = eA ⊗Lz. Moreover,
the above assertion fails in general if ‘<’ is replaced by ‘≤’.

Theorem 4.17. Let A be a unital normed algebra. If z ∈ iR, then eA ⊗ Lz : L
1(R+) → A

is totally isolated.
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To continue, we shall need a lemma.

Lemma 4.18. If z ∈ C+, then

lim
ζ→z

Im ζ=Im z

sup
s≥0

|e−zs − e−ζs| = 0.

Proof. If λ > 0 and if ω ∈ R, then

lim
ν→λ
ν>0

sup
s≥0

|e−(λ+iω)s − e−(ν+iω)s| = lim
ν→λ
ν>0

sup
s≥0

|e−λs − e−νs| = 0

by Lemma 4.4.

Theorem 4.19. Let A be a normed algebra. If e is a non-zero idempotent in A and if
z ∈ C+, then e⊗ Lz : L

1(R+) → A is accessible.

Proof. Let {zn}n∈N be a sequence in C+ such that zn ̸= z and Im zn = Im z for each
n ∈ N and such that limn→∞ zn = z. Clearly, e⊗Lzn ̸= e⊗Lz for all n ∈ N. Moreover,
since

∥e⊗ Lz − e⊗ Lzn∥ = ∥e∥ ∥Lz − Lzn∥ = ∥e∥ sup
s≥0

|e−zs − e−zns|

for all n ∈ N, it follows from Lemma 4.18 that limn→∞ ∥e ⊗ Lz − e ⊗ Lzn∥ = 0. Thus
{e⊗Lzn}n∈N has both of the properties required to assert the accessibility of e⊗Lz.

We can now present the following characterisation of continuous homomorphisms
from L1(R+).

Theorem 4.20. Let A be a unital normed algebra. If H : L1(R+) → A is a continuous
homomorphism, then either:

(i) H = 0 or H = eA ⊗ Lz for some z ∈ iR, in which cases H is totally isolated; or
(ii) H is essentially accessible.

Proof. Corollary 2.20 and Theorem 4.17 guarantee that H is totally isolated when H = 0

or when H = eA ⊗ Lz for some z ∈ iR. If H is non-zero and not of the form eA ⊗ Lz

with z ∈ iR, then either H = eA ⊗ Lw for some w ∈ C+ or H is not scalar. In the first
case H is essentially accessible (in fact accessible) by Theorem 4.19, and in the second
case H is essentially accessible by Theorem 2.17.

4.4. Complement. Let A be a unital normed algebra, and let e be a non-zero idempo-
tent in A. In the course of proving Theorem 4.19, it was shown that, for each z ∈ C+,
e⊗Lz can be approximated in norm by homomorphisms of the form e⊗Lw, w ∈ C+\{z}.
As a complement to this finding, we now show that there exist a normed algebra B and
an isometric homomorphism I : A → B such that each I ◦ (e ⊗ Lz), z ∈ C+, can be
approximated by homomorphisms different from any of the I ◦ (e⊗ Lw), w ∈ C+ \ {z}.

Example 4.21. Let A⊕A be the direct sum of two copies of A, endowed with the norm

∥(x, y)∥ = max(∥x∥, ∥y∥) (x, y ∈ A).

Let B = L (A⊕ A), and let I : A → B be the isometric homomorphism defined by

I(w)(x, y) = (wx,wy) (w, x, y ∈ A).
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Fix z ∈ C+, and let λ := Re z and ω := Im z. Pick two sequences of positive numbers
{µn}n∈N and {νn}n∈N converging to λ such that µn ̸= νn for all n ∈ N. For each f ∈
L1(R+) and each n ∈ N, define a homomorphism Gn in Hom(L1(R+),B) by

Gn(f)(x, y) = ((e⊗ Lµn+iω)(f)x, (e⊗ Lνn+iω)(f)y) (f ∈ L1(R+), x, y ∈ A).

In matrix form,

Gn(f)

(
x

y

)
=

(
Lµn+iω(f)e 0

0 Lνn+iω(f)e

)(
x

y

)
.

Taking into account that, for every w ∈ C+, (I ◦ (e⊗ Lw))(f) may be written as(
x

y

)
7→

(
Lw(f)e 0

0 Lw(f)e

)(
x

y

)
,

it is clear that each Gn is different from any of the I ◦ (e⊗ Lw), w ∈ C+. Since

∥I ◦ (e⊗ Lz)−Gn∥ ≤ max(∥Lz − Lµn+ia∥, ∥Lz − Lνn+ia∥)∥e∥

for all n ∈ N, it follows from Lemma 4.18 that limn→∞ ∥I ◦ (p⊗ Lz)−Gn∥ = 0.

Example 4.22. We retain the notation from the previous example. With z ∈ C+ fixed,
for each ϵ > 0, let {Sϵ(t)}t≥0 be the one-parameter semigroup on B defined by

Sϵ(t)

(
x

y

)
:=

(
e−ztp ϵte−ztp

0 e−ztp

)(
x

y

)
(t ≥ 0, x, y ∈ A).

Clearly, supt≥0 |e−zt| = 1. Also, it is easy to see that the function t 7→ te−λt, t ≥ 0,
attains its maximum at t = λ−1, so that

sup
t≥0

t|e−zt| = sup
t≥0

te−λt = λ−1e−1. (4.3)

Consequently, {Sϵ(t)}t≥0 is uniformly bounded—that is, supt≥0 ∥Sϵ(t)∥ < ∞. We may
then define a homomorphism Gϵ in Hom(L1(R+),B) by

Gϵ(f) =

∫ ∞

0

Sϵ(t)f(t) dt (f ∈ L1(R+)).

In explicit form,

Gϵ(f)

(
x

y

)
=

(
Lz(f)e ϵQz(f)e

0 Lz(f)e

)(
x

y

)
(f ∈ L1(R+), x, y ∈ A),

where Qz is the linear functional on L1(R+) defined by

Qz(f) =

∫ ∞

0

te−ztf(t) dt (f ∈ L1(R+)).

In view of (4.3), Qz is bounded with norm λ−1e−1. For each f ∈ L1(R+), let Qϵ(f) be
the member of L (B) given by

Qϵ(f)

(
x

y

)
=

(
0 ϵQz(f)e

0 0

)(
x

y

)
(x, y ∈ A).

Clearly, Qϵ(f) is nilpotent with index 2, that is, (Qϵ(f))
2 = 0, and we have

Gϵ(f) = (I ◦ (e⊗ Lz))(f) +Qϵ(f).
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Since (I ◦ (e⊗Lz))(f) is of scalar type and commutes with Qϵ(f), it follows that Gϵ(f) is
a spectral operator in the sense of Dunford [28]. Qϵ(f) is the uniquely defined, non-zero
nilpotent part of Gϵ(f), and so Gϵ(f) is not of scalar type. On the other hand,

∥(I ◦ (e⊗ Lz))(f)−Gϵ(f)∥ ≤ ϵ∥Qz∥ ∥f∥1∥e∥

for each f ∈ L1(R+), and so limϵ→0 ∥I ◦(e⊗Lz)−Gϵ∥ = 0. We conclude that I ◦(e⊗Lz)

can be approximated by homomorphisms whose values are spectral operators not of scalar
type.

5. Group algebras

All the semigroup algebras considered in the previous chapter have α-number equal to 1.
As it turns out, an ample supply of ordered AL-algebras with α-number greater than 1 is
furnished by the group algebras of non-zero, locally compact Abelian groups. This chapter
is concerned with algebras of that kind, focusing on isolability properties of respective
algebra homomorphisms.

5.1. Examples. We start with a few examples concerning the group algebras of specific
finite Abelian groups. These examples will not only instantly reveal ordered AL-algebras
with α-number greater than 1, but will also prepare us for a more systematic approach
towards calculation of the α-numbers of various group algebras.

Below, for n ∈ N, Zn be will viewed as the additive group of integers modulo n.

Example 5.1. Let A be a unital normed algebra, and let H : ℓ1(Z2) → A be a homo-
morphism. If f ∈ ℓ1(Z2), then f = f(0)δ0 + f(1)δ1, and further H(f) = f(0)h0 + f(1)h1,

where h0 = H(δ0) and h1 = H(δ1). The fundamental homomorphism eA⊗ l : ℓ1(Z2) → A

takes the form
(eA ⊗ l)(f) = (f(0) + f(1))eA (f ∈ ℓ1(Z2)).

It follows that
∥H − eA ⊗ l∥ = sup

|f(0)|+|f(1)|=1

∥f(0)(h0 − eA) + f(1)(h1 − eA)∥

= max(∥h0 − eA∥, ∥h1 − eA∥). (5.1)

Suppose henceforth that A possesses merely trivial idempotents and that H is non-zero.
The identities

δ0 ∗ δ0 = δ0, δ1 ∗ δ1 = δ0, and δ0 ∗ δ1 = δ1

imply that
h20 = h0, h21 = h0, and h0h1 = h1. (5.2)

The first identity of (5.2) proclaims that h0 is idempotent, so h0 = eA or h0 = 0. By the
third identity of (5.2), if h0 = 0, then h1 = 0, and hence H = 0, which is excluded by
assumption. Therefore, h0 = eA. Now the second identity of (5.2) becomes h21 = eA. By
applying the lemma below, we find that h1 = eA or h1 = −eA.
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Lemma 5.2. Let A ∈ Awni and let x ∈ A be such that x2 = eA. Then either x = eA or
x = −eA.

Proof. Assume that x ̸= eA and x ̸= −eA. Set y = (eA − x)/2. Then y ̸= 0 and y ̸= eA
while y2 = y. But this contradicts the assumption that A does not have a non-trivial
idempotent. The proof is complete.

Returning to our example, we see that H takes the form

H(f) = (f(0)± f(1))eA (f ∈ ℓ1(Z2)).

If H is different from eA ⊗ l, then, necessarily,

H(f) = (f(0)− f(1))eA (f ∈ ℓ1(Z2)),

and now (5.1) implies that ∥H − eA ⊗ l∥ = 2. We conclude that α(ℓ1(Z2)) = 2.

Example 5.3. The Klein four-group K4, also denoted by V or V4 (for Vierergruppe),
is the abstract Abelian group with four elements s1, s2, s3, s4 obeying the multiplication
table given in Table 1, where s1 represents the neutral element of the group. It is an
elementary fact that K4 is isomorphic to the direct sum Z2⊕Z2 (cf. [77, p. 58]). Let A be

Table 1. Multiplication table for K4

s1 s2 s3 s4

s1 s1 s2 s3 s4
s2 s2 s1 s4 s3
s3 s3 s4 s1 s2
s4 s4 s3 s2 s1

a unital normed algebra, and let H : ℓ(K4) → A be a homomorphism. If f ∈ ℓ1(K4), then
f =

∑4
i=1 f(si)δsi , and further H(f) =

∑4
i=1 f(si)hi, where hi = H(δsi) for i = 1, 2, 3, 4.

The fundamental homomorphism eA ⊗ l : ℓ1(K4) → A takes the form

(eA ⊗ l)(f) =
( 4∑
i=1

f(si)
)
eA (f ∈ ℓ1(K4)),

and we have
∥H − eA ⊗ l∥ = max

1≤i≤4
∥hi − eA∥. (5.3)

Suppose henceforth that A ∈ Awni and that H ̸= 0. Since

δs1 ∗ δs1 = δs1 and δs1 ∗ δsj = δsj (j = 2, 3, 4),

we have
h21 = h1 and h1hj = hj (j = 2, 3, 4). (5.4)

By a natural extension of the argument used in the previous example, these identities
imply that h1 = eA. Since

δsj ∗ δsj = δs1 (j = 2, 3, 4),
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we have
h2j = eA (j = 2, 3, 4), (5.5)

and hence, by Lemma 5.2,

hj = eA or hj = −eA (j = 2, 3, 4).

Now, in view of (5.3), it is clear that ∥H − eA ⊗ l∥ ≤ 2, and hence that

α(ℓ(K4)) ≤ 2. (5.6)

Next, define H : ℓ1(K4) → C by

H(f) = f(s1)− f(s2)− f(s3) + f(s4) (f ∈ ℓ1(K4)).

The corresponding hi’s, defined as previously by hi = H(δsi) for i = 1, 2, 3, 4, take the
form

h1 = h4 = 1 and h2 = h3 = −1,

and clearly satisfy (5.4), (5.5) with eA = 1, and

h2h3 = h4, h2h4 = h3, h3h4 = h2.

Comparing the above relations with the multiplication table of K4, we see that the
mapping si 7→ hi is a homomorphism from K4 onto the multiplicative group {−1, 1},
and hence is a character on K4. Correspondingly, H is a character on ℓ1(K4). Since
max1≤i≤4 |hi−1| = 2, it follows from (5.3) that ∥H−1⊗ l∥ = 2. This together with (5.6)
yields α(ℓ(K4)) = 2.

Example 5.4. Every homomorphismH from ℓ1(Z3) to a unital normed algebra A without
non-trivial idempotents is of the form

H(f) = f(0)eA + f(1)h+ f(2)h2 (f ∈ ℓ1(Z3)), (5.7)

where h ∈ A satisfies h3 = eA. Note that, if h = h2, then h2 = h3, and further h = h3 =

eA, implying that H = eA ⊗ l. Therefore, for H ̸= eA ⊗ l, the last of the formulae

(eA − h)3 = 3(h2 − h), (eA − h2)3 = 3(h− h2), (h− h2)3 = 3(h2 − h)

implies that ∥h−h2∥ ≥
√
3. Combining this inequality with the remaining two formulae,

we see that both ∥eA − h∥ and ∥eA − h2∥ are no smaller than
√
3. Since

∥H − eA ⊗ l∥ = max {∥eA − h∥, ∥eA − h2∥}, (5.8)

we have
α(ℓ1(Z3)) ≥

√
3. (5.9)

On the other hand, if we take A = C and set H to be as in (5.7) with h = exp(2πi/3),
then |h− 1| = |h2 − 1| =

√
3, and hence, by (5.8), ∥H − 1⊗ l∥ =

√
3. This combined with

(5.9) establishes that α(ℓ1(Z3)) =
√
3.

5.2. The β-number. The examples given in the previous section show, demonstrably,
that determining the α-number of a group algebra can be a tedious and quite involved
task. Here we introduce a certain numerical characteristic of an arbitrary non-zero, locally
compact Abelian group, and use it to compute α-numbers for a large assortment of group
algebras of locally compact Abelian groups (see the end of Section 5.5). The idea behind
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this characteristic comes partially from the analysis of common elements shared by the
examples just mentioned.

From now on, Abelian groups will be written additively, groups of characters and
groups of multiplicatively invertible elements of an algebra excepted. The neutral element
of an Abelian group will be denoted by 0. If G is an Abelian group, with or without a
topology under which G is a locally compact group, then Gd will denote G with the
discrete topology. The dual group of Gd, Ĝd, consists of all characters on G. If G is a
locally compact Abelian group, then 1G is the common neutral element of Ĝ and Ĝd.
When G is non-zero, both Ĝ \ {1G} and Ĝd \ {1G} are non-empty.

For a non-zero, locally compact Abelian group G, we let

β(G) := inf
χ∈Ĝ\{1G}

sup
s∈G

|χ(s)− 1|.

We shall refer to β(G) as the β-number of G. Note that β(Gd) ≤ β(G), which immediately
results from the relation Ĝ ⊂ Ĝd.

We now give an early indication of the range of values assumed by β-numbers.

Theorem 5.5. If G is a non-zero, locally compact Abelian group, then
√
3 ≤ β(G) ≤ 2.

Remark. As it turns out, both bounds appearing in the above statement are tight: we
have β(Z3) =

√
3 and β(Z2) = 2; see Corollary 5.18 below.

Proof of Theorem 5.5. The upper bound is clear, since every member of Ĝ is unitary.
To establish the lower bound, we argue by contradiction. Assume that there exists a

non-zero, locally compact Abelian group G for which β(G) <
√
3. One can then choose

χ ∈ Ĝ\{1G} such that the image χ(G) of G by χ is contained in Γϵ0 := {z ∈ T | |z−1| ≤√
3− ϵ0} for some 0 < ϵ0 <

√
3. Note that

Γϵ0 =

{
eiω

∣∣∣∣ |ω| ≤ 2π

3
− ϵ

}
,

where ϵ := 2π/3− 2 arcsin((
√
3− ϵ0)/2) is such that 0 < ϵ < 2π/3. Let

ω0 := sup {|ω| | eiω ∈ χ(G), −π < ω ≤ π}.

Since χ(G) is symmetric in the sense that eiω ∈ χ(G) implies e−iω ∈ χ(G), and since
χ ̸= 1G, we have

0 < ω0 = sup {ω | eiω ∈ χ(G), 0 ≤ ω ≤ π}.

Using the second expression for Γϵ0 together with the assumption that χ(G) ⊂ Γϵ0 , we
conclude that ω0 ≤ 2π/3− ϵ.

For each z ∈ C \ {0}, let Arg z denote the principal argument of z defined as the
unique 0 ≤ θ < 2π such that z = |z|eiθ. It is clear that

ω0 = sup {Arg z | z ∈ χ(G) ∩H}.

We now consider two cases (see Figure 1).

Case 1. Suppose first that ω0 ≤ π/2, and let s ∈ G be such that 2ω0/3 ≤ Argχ(s) ≤ ω0.

Then
ω0 <

4ω0

3
≤ 2Argχ(s) ≤ 2ω0 ≤ π.
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Γϵ0

ω0

χ(s)
χ(2s)

(a)

Γϵ0

ω0

χ(s)

χ(2s)

χ(−2s)

(b)

Fig. 1. The set χ(G) ∩ H is contained in the thick-filled arc. In panel (a), ω0 ≤ π/2, and in
panel (b), π/2 < ω0 ≤ 2π/3− ϵ.

The inequality 2Argχ(s) ≤ π ensures that 2Argχ(s) equals Arg (χ(s))2, which in turn
equals Argχ(2s). The same inequality written as Argχ(2s) ≤ π amounts to saying that
χ(2s) is a member of χ(G) ∩ H. But, since ω0 < 2Argχ(s) = Argχ(2s) and since no
element of χ(G) ∩ H may have the principal argument greater than ω0, we obtain a
contradiction.

Case 2. Suppose next that ω0 = π/2 + δ for some δ > 0. Let s ∈ G be such that
ω0 − δ/2 ≤ Argχ(s) ≤ ω0. Then, clearly,

2ω0 − δ ≤ 2Argχ(s) ≤ 2ω0. (5.10)

Note that ω0 ≤ 2π/3 − ϵ implies that 2ω0 < 2π. Therefore 2Argχ(s) < 2π, and, by
an argument as above, 2Argχ(s) = Argχ(2s). This combined with Argχ(−2s) = 2π −
Argχ(2s) and (5.10) yields

2π − 2ω0 ≤ Argχ(−2s) ≤ 2π − 2ω0 + δ.

Since

2π − 2ω0 + δ = 2π − 2

(
π

2
+ δ

)
+ δ = π − δ < π,

we have Argχ(−2s) < π, and so χ(−2s) is a member of χ(G)∩H. On the other hand, since
ω0 ≤ 2π/3 − ϵ < 2π/3 implies that 2π − 2ω0 > ω0, we have Argχ(−2s) > ω0. However,
the latter is impossible since no element of χ(G) ∩H has the principal argument greater
than ω0.

Since either case leads to a contradiction, the theorem is proved.

For a unital algebra A, we denote by A× the group of multiplicatively invertible
elements of A. The neutral element of A× is obviously identical with eA.

Let G be an Abelian group, and let A be a unital algebra. An A-valued family
{G (s)}s∈G is a group in A if {G (s)}s∈G is a semigroup in A with the property that
G (s) ∈ A× for each s ∈ G. An L (X)-valued group, where X is a non-zero normed space,
is called a group on X.
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The importance, for our purposes, of the concept of β-number lies in the theorem
that we present next. That theorem will serve as a replacement for Proposition 2.9 in the
context of homomorphisms from group algebras of locally compact Abelian groups.

Theorem 5.6. Let G be a non-zero Abelian group, and let A be a unital normed algebra.
If {G (s)}s∈G is a group in A such that sups∈G ∥G (s)− eA∥ < β(Gd), then G (s) = eA for
every s ∈ G.

Before embarking on the proof, we present the necessary background material.
For an element x of a complex normed algebra A, we denote the spectrum of x by

σ(x); when more specificity is required, we will use the notation σA(x) instead.
We recall that an invertible element x of a unital normed algebra is termed doubly

power bounded if supn∈Z ∥xn∥ <∞. From the spectral radius formula it follows that the
spectrum of a doubly power bounded element of a complex, unital Banach algebra is
contained in T.

Proposition 5.7 (Gelfand’s theorem). Let A be a complex, unital Banach algebra, and
let x be a doubly power bounded element of A. If σ(x) = {1}, then x = eA.

Gelfand’s theorem can be proved in a number of different ways (see, e.g., [5], [6, The-
orem 1.1], [34], [65, Corollary 4.2]). The result has various generalisations, of which one is
due to Hille [40] (see also [41, Theorem 4.10.1]) and is usually referred to as the Gelfand–
Hille theorem; it states that, if x is an element of a complex, unital Banach algebra A

such that σ(x) = {1}, then (x− eA)
r = 0 for some r ∈ N if and only if ∥xn∥ = O(nr−1),

or ∥xn∥ = o(nr), as |n| → ∞. For an informative account of various developments related
to the Gelfand–Hille theorem, see [100]; and for modern generalisations of this theorem,
see [27] and the references therein.

Proof of Theorem 5.6. Let M := sups∈G ∥G (s)∥. Then, clearly,

M ≤ 1 + sup
s∈G

∥G (s)− eA∥ < 1 + β(Gd),

so M is finite, and, in particular, G (s) is doubly power bounded for every s ∈ G. Let B

be the closed algebra generated by {G (s) | s ∈ G} in the Banach algebra completion
of A. The algebra B is commutative and unital, and its identity can be identified with
the identity of A. By Proposition 5.7, to conclude the proof, we need only show that, for
every s ∈ G, G (s) as an element of B has spectrum equal to {1}.

We shall exploit the well-known characterisation of the spectrum of an element of
a unital, commutative Banach algebra as the range of the element’s Gelfand transform:
if C is a complex, unital, commutative Banach algebra and if x ∈ C, then

σC(x) = {ϕ(x) | ϕ ∈ ∆(C)}

(see, e.g., [22, Theorem 3.2.2]).
If ϕ ∈ ∆(B), then

ϕ(G (s+ t)) = ϕ(G (s)G (t)) = ϕ(G (s))ϕ(G (t))

for all s, t ∈ G and
ϕ(G (0)) = ϕ(eA) = 1.
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Moreover,

sup
s∈G

|ϕ(G (s))| ≤ ∥ϕ∥M =M,

where we used the fact that ∥ϕ∥ = 1 (see, e.g., [45, Lemma 2.1.5]). Since (ϕ(G (s)))n =

ϕ(G (ns)) for any s∈G and any n∈N, it follows that, given n∈N, (sups∈G |ϕ(G (s))|)n≤M,

and hence sups∈G |ϕ(G (s))| ≤M1/n. Letting n→ ∞, we obtain

sup
s∈G

|ϕ(G (s))| ≤ 1. (5.11)

If s ∈ G, then

ϕ(G (s))ϕ(G (−s)) = ϕ(G (s)G (−s)) = ϕ(G (0)) = 1,

implying that

1 ≤ |ϕ(G (s))| |ϕ(G (−s))|.

The latter together with (5.11) yields

|ϕ(G (s))| = |ϕ(G (−s))| = 1.

We conclude that the mapping s 7→ ϕ(G (s)) is a character on G. Now, choose any
0 < ϵ < β(Gd) so that sups∈G ∥G (s)− eA∥ ≤ β(Gd)− ϵ. Then

|ϕ(G (s))− 1| = |ϕ(G (s)− eA)| ≤ ∥ϕ∥ ∥G (s)− eA∥ ≤ β(Gd)− ϵ

for all s ∈ G. Combining this with the definition of β(Gd), we see that

ϕ(G (s)) = 1 (5.12)

for all s ∈ G.
In view of the last relation, we obtain

σB(G (s)) = {ϕ(G (s)) | ϕ ∈ ∆(B)} = {1}

for all s ∈ G, which is all that we needed to complete the proof.

Remark 5.8. For a finite group G, the use of Proposition 5.7 in the last paragraph of
the above proof can be replaced by a simpler argument. With s ∈ G fixed arbitrarily, we
have, in view of (5.12),

ϕ(eA + G (s) + · · ·+ (G (s))|G|−1) = ϕ(eA) + ϕ(G (s)) + · · ·+ (ϕ(G (s)))|G|−1 = |G|

for all ϕ ∈ ∆(B). Consequently,

σB(eA + G (s) + · · ·+ G (s)|G|−1) = {|G|},

and, in particular, e+ G (s) + · · ·+ (G (s))|G|−1 is invertible in B. Since

(eA − G (s))(eA + G (s) + · · ·+ (G (s))|G|−1) = eA − G (s)|G| = eA − G (|G|s)
= eA − G (0) = 0,

it follows that G (s) = eA.
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5.3. Calculation of β-numbers. The main goal of this section is to calculate the
β-number of an arbitrary non-zero, locally compact Abelian group.

We recall that the order of a character χ on an Abelian group G is the smallest
positive integer n such that (χ(s))n = 1 for all s ∈ G. If no such n exists, then χ is said
to have infinite order.

Lemma 5.9. Let G be a locally compact Abelian group. If χ ∈ Ĝ has infinite order, then
χ(G) is dense in T.

Proof. The set χ(G) is a subgroup of T, and the closure χ(G) of χ(G) in T is a closed
subgroup of T. Consequently, χ(G) is either finite or all of T (see, e.g., [61, Section 2,
Corollary 3]).

Assume that χ(G) is finite. Then a fortiori χ(G) is finite and there exists n ∈ N such
that (χ(s))n = 1 for every s ∈ G. But this means that χ is of finite order, contrary to
assumption. Therefore χ(G) is not finite, and so χ(G) is all of T.

Lemma 5.10. Let G be a locally compact Abelian group. If χ ∈ Ĝ has infinite order, then

sup
s∈G

|χ(s)− 1| = 2.

Proof. By Lemma 5.9, χ(G) is dense in T. In particular, there exists a sequence {sn}n∈N
in G such that limn∈N χ(sn) = −1. Clearly, limn∈N |χ(sn)−1| = 2. Since |χ(s)−1| ≤ 2 for
each s ∈ G, it follows that supn∈N |χ(sn)−1| = 2, and further that sups∈G |χ(s)−1| = 2.

Lemma 5.11. Let G be a non-zero, locally compact Abelian group. If χ ∈ Ĝ\{1G} is such
that χm = 1G for some m ∈ N, then, letting q := |χ(G)|, we have the following:

(i) q > 1;
(ii) q divides m;

(iii) sup
s∈G

|χ(s)− 1| = 2 sin

(
π[q/2]

q

)
.

Proof. As χ ̸= 1G, we have m > 1 and q > 1. Given that (χ(s))m = 1 for each s ∈ G,
it is clear that χ(G) ⊂ Um, where Um is the multiplicative group of mth roots of unity.
Moreover, χ(G) is a subgroup of Um. Since Um is cyclic (isomorphic to Zm) and since a
subgroup of a cyclic group is cyclic, it follows that χ(G) is cyclic. Let r be the smallest
integer with 1 ≤ r ≤ m such that exp(2πir/m) is a generator of χ(G). Then, clearly,
qr = m. We see that q divides m and, moreover, that exp(2πir/m) = exp(2πi/q). The
latter implies that

χ(G) =

{
exp

(
2πil

q

) ∣∣∣∣ l = 0, . . . , q − 1

}
.

Consequently,

{|χ(s)− 1| | s ∈ G} =

{∣∣∣∣exp(2πil

q

)
− 1

∣∣∣∣ ∣∣∣∣ l = 0, . . . , q − 1

}
,

and since the largest of the numbers∣∣∣∣exp(2πil

q

)
− 1

∣∣∣∣ (l = 0, . . . , q − 1)

is 2 sin(π[q/2]/q), the lemma follows.
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Corollary 5.12. Let G be a non-zero, locally compact Abelian group. If χ ∈ Ĝ \ {1G}
has order p, where p is a prime number, then

sup
s∈G

|χ(s)− 1| = 2 sin

(
π[p/2]

p

)
.

Proof. The corollary is an immediate consequence of Lemma 5.11 and the fact that the
only divisor of p greater than 1 is p itself.

Lemma 5.13. Let G be a locally compact Abelian group. If Ĝ contains an element whose
order is finite and has a prime factor p, then Ĝ contains an element of order p.

Proof. According to a classical theorem of Cauchy, if H is a finite group (Abelian or not)
and if p is a prime factor of |H|, then H contains an element of order p (cf. [43, Theorem
5.2]). Suppose that χ ∈ Ĝ has finite order m and that p is a prime factor of m. The lemma
follows at once by applying Cauchy’s theorem to the group {χk | k = 0, . . . ,m− 1}.

We are almost ready to present the main result of this section. However, before pro-
ceeding, we still need to lay out a few more prerequisites.

Let G be a non-zero, locally compact Abelian group. Then the following mutually
exclusive cases may occur:

(i) each element of Ĝ \ {1G} is either of infinite order or of order 2k for some k ∈ N;
(ii) Ĝ \ {1G} contains an element whose order is finite and has an odd prime factor.

Let PĜ be the set of odd prime numbers p such that there exists a member of Ĝ having
order p. We note that, if case (ii) holds, then, by Lemma 5.13, PĜ is non-empty, and, in
particular, one can speak about the smallest element of PĜ.

We are now ready to state the aforementioned main result.

Theorem 5.14. Let G be a non-zero, locally compact Abelian group.

(i) If each element of Ĝ \ {1G} is either of infinite order or of order 2k for some k ∈ N,
then β(G) = 2.

(ii) If Ĝ \ {1G} contains an element whose order is finite and has an odd prime factor,
then

β(G) = 2 sin

(
π[r/2]

r

)
,

where r is the smallest element of PĜ.

Proof. (i) If χ ∈ Ĝ has infinite order, then, by Lemma 5.9, χ(G) is dense in T and

sup
s∈G

|χ(s)− 1| = 2.

If χ ∈ Ĝ has order 2k, then, by Lemma 5.11, there exists q = 2j with 1 ≤ j ≤ k such that

sup
s∈G

|χ(s)− 1| = 2 sin

(
π[q/2]

q

)
= 2 sin

(
π

2

)
= 2.

In both cases
sup
s∈G

|χ(s)− 1| = 2,

and this immediately yields the assertion in question.
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(ii) Suppose now that there exists a member of Ĝ\{1G} whose order is finite and has
an odd prime factor. With r being the smallest element of PĜ, let ζ ∈ Ĝ have order r.
By Corollary 5.12,

sup
s∈G

|ζ(s)− 1| = 2 sin

(
π[r/2]

r

)
.

We want to prove that
sup
s∈G

|ζ(s)− 1| = β(G).

By definition of β(G), the left-hand side here does not exceed the right-hand side, and
therefore it suffices to show that, if γ ∈ Ĝ, then

sup
s∈G

|ζ(s)− 1| ≤ sup
s∈G

|γ(s)− 1|.

Since 2 sin(π[r/2]/r) ≤ 2, the latter inequality is clear when the right-hand side equals 2.
By the argument used to prove statement (i), we conclude that this is the case when γ

is of order 2k for some integer k or when γ is of infinite order.
Thus, we are left with the case where the order of γ is (finite and) odd. By Lemma 5.11,

then there is a necessarily odd positive integer q such that

sup
s∈G

|γ(s)− 1| = 2 sin

(
π[q/2]

q

)
.

If p is a prime factor of q, then, clearly, p is odd, and, by Lemma 5.13, p belongs to PĜ.
This implies that r ≤ p ≤ q. As the sequence {sin(πn/(2n+ 1))}n∈N is increasing, the
function n 7→ sin(π[n/2]/n) is increasing on the set of odd positive integers. It follows
that

2 sin

(
π[q/2]

q

)
≥ 2 sin

(
π[r/2]

r

)
,

and we are done.

Theorem 5.15. If G is a non-zero, divisible Abelian group, then β(Gd) = 2.

Proof. In view of Theorem 5.14, it suffices to show that every χ ∈ Ĝ \ {1G} has infinite
order. Assume to the contrary that some χ ∈ Ĝ \ {1G} has finite order k. Then χ(kt) =
(χ(t))k = 1 for all t ∈ G. Since, by the divisibility of G, each s in G can be represented
as kt for some t ∈ G, it follows that χ(s) = 1 for all s ∈ G, contrary to the assumption
that χ is non-trivial.

Theorem 5.16. We have β(Z) =
√
3.

Proof. As is well known, Ẑ can be identified with the circle group T. Among the elements
of T \ {1}, some are of finite order and others are of infinite order. The orders of finite-
order elements of T \ {1} range over all of the positive integers greater than 1. Among
these, the smallest odd prime order is 3. Hence, in view of Theorem 5.14,

β(Z) = 2 sin

(
π[3/2]

3

)
=

√
3.

Remark. With the theorem just proved, we can now derive anew the lower bound given
in Theorem 5.5. To this end, it suffices to show that, if G is a non-zero Abelian group,
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then β(Gd) ≥
√
3. Note that, if χ ∈ Ĝd \ {1G} and if s ∈ G is such that χ(s) ̸= 1, then

∥χ− 1G∥∞ ≥ sup
n∈Z

|χ(ns)− 1| = sup
n∈Z

|χ(s)n − 1| ≥ β(Z).

Hence β(Gd) ≥ β(Z), and now the bound in question, β(Gd) ≥
√
3, is an immediate

consequence of Theorem 5.16.

Given two groups G1 and G2, we use the notation G1
∼= G2 to indicate that G1 and G2

are isomorphic.

Theorem 5.17. Let G be a non-zero, finite Abelian group isomorphic to Zp
e1
1
⊕· · ·⊕Zp

et
t

,
where p1, . . . , pt are prime numbers and e1, . . . , et are positive integers. Let r =

min({p1, . . . , pt} \ {2}) in the case where some of the pi’s are greater than 2. Then

β(G) =

2 whenever p1 = · · · = pt = 2,

2 sin

(
π[r/2]

r

)
otherwise.

Proof. Since G is finite, we have Ĝ ∼= G (the isomorphism is not a canonical one; see,
e.g., [32, Corollary 4.8]), and so Ĝ ∼= Zp

e1
1

⊕ · · · ⊕Zp
et
t
. If p1 = · · · = pt = 2, then |Ĝ| is a

power of 2, and consequently, the order of every non-trivial element of Ĝ is a power of 2.
Hence, by Theorem 5.14, β(G) = 2.

Suppose now that some of the pi’s are odd prime numbers. Since |Ĝ| = pe11 . . . pett , it is
clear that, if an element of Ĝ has order which is a prime, then the order of this element is
one of the numbers p1, . . . , pt. By Cauchy’s theorem, for each i = 1, . . . , t, there exists an
element of Ĝ of order pi. Let r be the smallest of the odd primes among the pi’s. Then,
by Theorem 5.14,

β(G) = 2 sin

(
π[r/2]

r

)
.

Corollary 5.18. If p is a prime number, then

β(Zp) = 2 sin

(
π[p/2]

p

)
.

Remark. Bearing in mind that every non-zero, finite Abelian group G is isomorphic to
a direct sum of the form Zq1 ⊕ · · · ⊕ Zqt , where q1, . . . , qt are (not necessarily distinct)
powers of prime numbers, we see that Theorem 5.17 gives the formula for β(G) for every
non-zero, finite Abelian group G.

5.4. Relationship with homomorphisms. In this section, we exhibit a relationship
between β-numbers and homomorphisms from group algebras.

Let G be a locally compact Abelian group with dual group Ĝ. Given f ∈ L1(G), the
Fourier transform of f is the function χ 7→ Fχ(f) on Ĝ defined by

Fχ(f) =

∫
G

f(s)χ(s) ds (χ ∈ Ĝ).

For each χ ∈ Ĝ, the mapping Fχ : f 7→ Fχ(f) is a character on L1(G). Conversely, every
character on L1(G) coincides with Fχ for some uniquely determined χ ∈ Ĝ (see, e.g.,
[38, Corollary 23.7]). It is plain that F1G is the fundamental character on L1(G); this
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character is usually called the augmentation character on L1(G) (see, e.g., [21, Definition
3.3.29]).

Given s ∈ G, we denote by Ts the operator of translation by s on L1(G), defined by

(Tsf)(t) = f(t+ s) (f ∈ L1(G), a.e. t ∈ G). (5.13)

It is straightforward to verify that the family {Ts}s∈G is a strongly continuous group
on L1(G) and, moreover, that

Ts(f ⋆ g) = Tsf ⋆ g = f ⋆ Tsg

for all s ∈ G and all f, g ∈ L1(G).
We recall that the algebra L1(G) possesses an approximate identity {uι}ι∈I satisfying

∥uι∥1 = 1 for each ι ∈ I (see, e.g., [38, Theorem 20.27]).
The proof of the following result proceeds along the same lines as the proof of Propo-

sition 3.4 and is therefore omitted.

Proposition 5.19. Let G be a locally compact Abelian group, and let A be a unital
normed algebra. Let H : L1(G) → A be a non-zero, continuous homomorphism. Then:

(i) there exists a unique group G = {G (s)}s∈G on Ran(H) such that

G (s)H(f) = H(Tsf)

for each s ∈ G and each f ∈ L1(G); the group G is strongly continuous and satisfies
sups∈G ∥G (s)∥ ≤ ∥H∥;

(ii) if {uι}ι∈I is an approximate identity for L1(G), then

G (s)x = lim
ι∈I

H(Tsuι)x (5.14)

for each s ∈ G and each x ∈ Ran(H);
(iii) with L denoting the left regular representation of A, the mapping (L ◦ H)↾Ran(H)

admits the representation(
(L ◦H)↾Ran(H)

)
(f)x =: H(f)x =

∫
G

f(s)G (s)xdmG(s) (5.15)

for each f ∈ L1(G) and each x ∈ Ran(H).

Our main result in this section is as follows.

Theorem 5.20. Let G be a non-zero, locally compact Abelian group, and let A be a unital
normed algebra. If χ ∈ Ĝ and if H : L1(G) → A is a continuous homomorphism such that
∥H − eA ⊗ Fχ∥ < β(Gd), then there exists an idempotent e in A such that H = e⊗ Fχ.

Proof. The proof follows closely that of Theorem 3.5 and is similarly structured.

Step 1. If H = 0, then ∥H − eA ⊗ Fχ∥ < β(Gd), since ∥Fχ∥ = ∥χ∥∞ = 1 implies that
∥eA⊗Fχ∥ = ∥eA∥ ∥Fχ∥ = 1 and since β(Gd) ≥

√
3 by Theorem 5.5. Also, if H = 0, then

H = 0 ⊗ Fχ, where the last 0 denotes the zero element of A. We see that the theorem
holds when H is zero. From now on we may therefore suppose that H is non-zero. Choose
a contractive approximate identity {uι}ι∈I for L1(G). Let {G (s)}s∈G be the group on
Ran(H) whose existence is established in Proposition 5.19. If s ∈ G, if x ∈ Ran(H), and



50 A. Bobrowski and W. Chojnacki

if ι ∈ I, then

∥H(Tsuι)x− (eA ⊗ Fχ)(Tsuι)x∥ ≤ ∥H − eA ⊗ Fχ∥ ∥Tsuι∥1∥x∥
≤ ∥H − eA ⊗ Fχ∥ ∥x∥. (5.16)

Since χ is continuous, we have limι∈I Fχ(Tsuι) = χ(s), and so

lim
ι∈I

(eA ⊗ Fχ)(Tsuι)x = χ(s)x.

Combining this with (5.14), we deduce from (5.16) that

∥G (s)x− χ(s)x∥ ≤ ∥H − eA ⊗ Fχ∥ ∥x∥.

Consequently,
sup
s∈G

∥G (s)− χ(s)IRan(H)∥ ≤ ∥H − eA ⊗ Fχ∥,

and further, since χ is unitary,

sup
s∈G

∥χ(s)G (s)− IRan(H)∥ ≤ ∥H − eA ⊗ Fχ∥.

This together with the assumption that ∥H − eA ⊗ Fχ∥ < β(Gd) yields

sup
s∈G

∥χ(s)G (s)− IRan(H)∥ < β(Gd).

An application of Theorem 5.6 now implies that

χ(s)G (s) = IRan(H)

for all s ∈ G. Hence, immediately, G (s) = χ(s)IRan(H) for all s ∈ G, and further, by
(5.15),

H(f)x = Fχ(f)x (5.17)

for all f ∈ L1(G) and all x ∈ Ran(H).

Step 2. If f ∈ L1(G), then

H(f) = lim
ι∈I

H(uι)H(f) = lim
ι∈I

H(f)H(uι). (5.18)

For each ι ∈ I, putting x = H(uι) in (5.17) yields

H(f)H(uι) = Fχ(f)H(uι).

Combining this with (5.18), we find that

H(f) = lim
ι∈I

Fχ(f)H(uι). (5.19)

Now, arguing as in the proof of Theorem 3.5, we deduce that the limit limι∈I H(uι) exists
and is an idempotent in Ran(H). This together with (5.19) establishes the theorem.

Remark 5.21. Comparing Theorem 5.20 with Theorem 3.5, it is natural to conjecture
that a stronger version of Theorem 5.20 holds, namely one to the effect that, if χ ∈ Ĝ

and if H : L1(G) → A is a continuous homomorphism such that ∥H−eA⊗Fχ∥ < β(Gd),

then H = eA ⊗ Fχ. This conjecture is, however, false.
To see this, consider a unital normed algebra A0, and let A0 ⊕ A0 be the direct sum

of two copies of A0, endowed with the norm

∥(x, y)∥ = max(∥x∥, ∥y∥) (x, y ∈ A0).
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Let A = L (A0 ⊕A0). Then A is a unital normed algebra with identity IA0⊕A0 . For each
λ ∈ C, let eλ be the element of A defined by

eλ(x, y) = (x+ λy, 0) (x, y ∈ A0).

In matrix form,

eλ

(
x

y

)
=

(
1 λ

0 0

)(
x

y

)
.

It is readily verified that eλ is idempotent and ∥eλ∥ = 1 + |λ|. In particular, if µ ≥ 1,
then eµ−1 is an idempotent in A whose norm is equal to µ.

In view of the above and the fact that, by Theorem 5.5, β(Gd) > 1, there exists an
idempotent e in A such that 1 < ∥e∥ < β(Gd). Pick χ ∈ Ĝ and set

H := (eA − e)⊗ Fχ.

Then
∥H − eA ⊗ Fχ∥ = ∥e⊗ Fχ∥ = ∥e∥ ∥Fχ∥ = ∥e∥ < β(Gd).

But H is clearly different from eA ⊗ Fχ. This disproves the conjecture.

5.5. Applications. Based on the material from the last and previous sections, we now
draw further conclusions regarding isolability properties of homomorphisms.

Theorem 5.20 coupled with Theorem 5.5 guarantees that, if G is a non-zero, locally
compact Abelian group, then L1(G) has property (PFχ) for every χ ∈ Ĝ (to recall the
definition of the properties in question, see the statement of Theorem 2.16). This, together
with the fact that ∥Fχ∥ = 1 for each χ ∈ Ĝ, leads, by virtue of Theorem 2.16, to the
following result.

Theorem 5.22. Let G be a non-zero, locally compact Abelian group, and let A be a unital
normed algebra. If χ ∈ Ĝ, then eA ⊗ Fχ : L

1(G) → A is totally isolated.

We also immediately deduce the following theorem.

Theorem 5.23. Let G be a non-zero, locally compact Abelian group, let A ∈ Awni, and let
χ ∈ Ĝ. If H : L1(G) → A is a non-zero homomorphism such that ∥H−eA⊗Fχ∥ < β(Gd),

then H = eA ⊗ Fχ.

Proof. By Theorem 5.20, there exists an idempotent e in A such that H = e⊗Fχ. Since
A has no non-trivial idempotent, e is either the zero element or the identity element of A.
Since H is non-zero, we necessarily have e = eA, and this implies that H = eA ⊗ Fχ.

An application of Theorem 5.23 with χ taken to be 1G establishes the following result.

Theorem 5.24. If G is a non-zero, locally compact Abelian group, then β(Gd)≤α(L1(G)).

Combining this theorem with Theorem 5.5 yields the following corollary.

Corollary 5.25. If G is a non-zero, locally compact Abelian group, then α(L1(G))≥
√
3.

As β(Gd) ≤ β(G) for every non-zero, locally compact Abelian group G, the following
result can be viewed as a kind of partial converse of Theorem 5.24.

Theorem 5.26. If G is a non-zero, locally compact Abelian group, then α(L1(G)) ≤ β(G).
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Proof. For each χ ∈ Ĝ, Fχ is a non-zero, complex-valued homomorphism from L1(G),
and

∥Fχ − F1G∥ = sup
s∈G

|χ(s)− 1|. (5.20)

Moreover, if χ ̸= 1G, then Fχ ̸= F1G . Since F1G is the fundamental character on L1(G)

and since C is an algebra with no non-trivial idempotents, it follows that

α(L1(G)) ≤ inf
χ∈Ĝ\{1G}

∥Fχ − F1G∥.

In view of (5.20), this implies that α(L1(G)) ≤ β(G).

Combining Theorems 5.24 and 5.26, we obtain the following result.

Theorem 5.27. If G is a non-zero, locally compact Abelian group such that β(Gd) =

β(G), then α(L1(G)) = β(G).

Since there is no distinction between β(Gd) and β(G) when G is a non-zero, discrete
Abelian group, we immediately obtain the following corollary.

Corollary 5.28. If G is a non-zero, discrete Abelian group, then α(ℓ1(G)) = β(G).

Remark. If G is a non-zero, finite Abelian group, then α(ℓ1(G)) = β(G) by Corol-
lary 5.28, and β(G) in turn can be explicitly calculated using Theorem 5.17. We thus
have a general device for determining the α-number of the group algebra of an arbi-
trary non-zero, finite Abelian group. In Section 5.1 we calculated α(ℓ1(G)) directly in
the case where G is one of the groups Z2, Z2 ⊕ Z2 (the Klein four-group), and Z3. Un-
surprisingly and reassuringly, we can retrieve the same results using the general device
just mentioned. Indeed, in accordance with Theorem 5.17, β(Z2) = 2, β(Z2 ⊕ Z2) = 2,
and β(Z3) = 2 sin(π[3/2]/3) =

√
3, and further, by Corollary 5.28, α(ℓ1(Z2)) = 2,

α(ℓ1(Z2 ⊕ Z2)) = 2, and α(ℓ1(Z3)) =
√
3, the three latter values being exactly the

values obtained in Section 5.1.

The following result is an immediate consequence of Theorem 5.16 and Corollary 5.28.

Theorem 5.29. We have α(l1(Z)) =
√
3.

Another readily-obtained result is as follows.

Theorem 5.30. If G is a non-zero, divisible, locally compact Abelian group, then
α(L1(G)) = 2.

Proof. Since β(G) ≤ 2, β(Gd) ≤ β(G), and, by Theorem 5.15, β(Gd) = 2, we see that
β(Gd) = β(G) = 2. Now the theorem follows from Theorem 5.27.

As an immediate consequence, we obtain the following theorem.

Theorem 5.31. We have α(L1(R)) = α(l1(R)) = 2.

6. Convolution algebras of integrable even functions on groups

Another, and final, class of ordered AL-algebras that we shall consider in connection
with the theme of isolability properties of homomorphisms is formed by the convolution
algebras of Haar integrable, even functions on locally compact Abelian groups.
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Let G be a locally compact Abelian group. Let L1
e(G) be the space of all even elements

of L1(G):
L1
e(G) = {f ∈ L1(G) | f(s) = f(−s) for a.e. s ∈ G}.

The space L1
e(G) is a closed subalgebra and a sublattice of L1(G). One verifies at once

that L1
e(G) is a complex ordered AL-algebra. It is algebras of type L1

e(G) and their
homomorphisms that will be of interest for us in this chapter.

6.1. Background. Let G be an Abelian group, and let A be a unital algebra. An A-
valued family {C (s)}s∈G is a cosine function, or cosine family, in A if:

(i) 2C (s)C (t) = C (s+ t) + C (s− t) for all s, t ∈ G;
(ii) C (0) = eA.

An L (X)-valued cosine function, where X is a non-zero normed space, is called a cosine
function onX. It is straightforward to see that, if {C (s)}s∈G is a cosine function in A, then
(i) every pair of elements of the range of the function commutes: C (s)C (t) = C (t)C (s)

for all s, t ∈ G; (ii) the function is even: C (s) = C (−s) for all s ∈ G.
Let G be an Abelian group. By a quasi-character on G we mean a homomorphism

from G into the multiplicative group C× of complex numbers (see, e.g., [52, p. 278] for
this terminology).

Our subsequent development will critically involve scalar-valued cosine functions on
Abelian groups. The following proposition lists all relevant, for our purposes, properties
of such functions:

Proposition 6.1 (Kannappan [46]). Let G be an Abelian group, and let c : G→ C.

(i) c is a cosine function if and only if there exists a quasi-character χ on G such that

c = 1
2 (χ+ χ̌), (6.1)

where χ̌ is the quasi-character on G defined by χ̌(s) = χ(−s) for all s ∈ G.
(ii) Suppose that c is of the form given in (6.1), where χ is a quasi-character on G. Then:

(a) if (6.1) also holds with χ being replaced by another quasi-character γ on G, then
either γ = χ or γ = χ̌;

(b) c is bounded if and only if χ is bounded, and this happens precisely when χ is
unitary (in which case χ is a character on G);

(c) if G is a topological group, then c is continuous (at a single point, or, equivalently,
everywhere) if and only if χ is continuous.

Proof. Assertion (i) and parts (a) and (c) of assertion (ii) follow from Theorems 2, 3, and 1
of [46], respectively. For part (b) of assertion (ii), see, e.g., the proof of [13, Theorem 10].

6.2. The γ-numbers. We now introduce certain numerical characteristics that will serve
as counterparts of β-numbers in the context of algebras of the form L1

e(G).
LetG be a locally compact Abelian group. We denote by Cos(G) the set of all complex-

valued, continuous, bounded cosine functions on G. In view of (i) and (ii)(b) of Propo-
sition 6.1, each member of Cos(G) is a real function with values between −1 and 1. In
the subsequent analysis, the set Cos(G) will play a role analogous to that played by the
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character group Ĝ for homomorphisms from L1(G). One distinguished member of Cos(G)
is 1G, the trivial cosine function on G. When G is non-zero, Cos(G) contains at least one
more extra element. Indeed, in that case Ĝ \ {1G} is non-empty; and if χ ∈ Ĝ \ {1G},
then (χ+ χ)/2 (= (χ+ χ̌)/2) is in Cos(G) and is different from 1G.

If G is a non-zero, locally compact Abelian group and if c ∈ Cos(G), we let

γ(G, c) := inf
c̃∈Cos(G)

c̃ ̸=c

sup
s∈G

|c(s)− c̃(s)|.

We shall refer to γ(G, c) as the γ-number of the pair (G, c). Note that γ(Gd, c) ≤ γ(G, c)

whenever c ∈ Cos(G), which immediately results from the relation Cos(G) ⊂ Cos(Gd).
The result stated next reveals the significance of γ-numbers for isolability considera-

tions. It will be used as a counterpart of Theorem 5.6 in the current context.

Theorem 6.2. Let G be a non-zero Abelian group, let A be a unital normed algebra, and
let c ∈ Cos(Gd). If {C (s)}s∈G is a cosine function in A such that sups∈G ∥C (s)−c(s)eA∥
< γ(Gd, c), then C (s) = c(s)eA for all s ∈ G.

The following generalisation of Gelfand’s theorem will be instrumental in the proof of
the above theorem.

Proposition 6.3 ([14, Theorem 6]). Let A be a complex, unital Banach algebra, and let a
be a doubly power bounded element of A with a finite spectrum σ(a) = {λ1, . . . , λn} ⊂ T,
λk ̸= λl for k ̸= l. Then there exist idempotents e1, . . . , en in A such that

∑n
k=1 ek = eA,

ekel = 0 for k ̸= l, and a =
∑n

k=1 λkek.

Proof of Theorem 6.2. We adapt the argument of [14, Theorem 7] and proceed in three
steps.

Step 1. Let ℓ∞(G,A) be the space of all bounded functions from G to A, endowed with
the norm

∥x∥∞ = sup
s∈G

∥x(s)∥ (x ∈ ℓ∞(G,A)).

For x ∈ A, let x denote the constant function on G with value x. For each s ∈ G, we
define a linear operator C(s) on ℓ∞(G,A) by

(C(s)x)(t) = C (s)[x(t)] (x ∈ ℓ∞(G,A), t ∈ G).

Clearly, C(s) is bounded, with ∥C(s)∥ ≤ ∥C (s)∥. Since C(s)eA = C (s) and ∥eA∥∞ = 1,
we see that in fact ∥C(s)∥ = ∥C (s)∥. It is plain that C = {C(t)}s∈G is a cosine family
on ℓ∞(G,A). For each s ∈ G, we have(

(C(s)− c(s)Iℓ∞(G,A))x
)
(t) = (C (s)− c(s)eA)[x(t)]

for all x ∈ ℓ∞(G,A) and all t ∈ G, and this implies, as above, that

∥C(s)− c(s)Iℓ∞(G,A)∥ = ∥C (s)− c(s)eA∥.

Choose any 0 < ϵ < γ(Gd, c) so that ∥C (s)− c(t)eA∥ ≤ γ(Gd, c)− ϵ for all s ∈ G. Then,
clearly,

∥C(s)− c(s)Iℓ∞(G,A)∥ ≤ γ(Gd, c)− ϵ (6.2)

for all s ∈ G.
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Step 2. We next show that, when restricted to a certain subspace of ℓ∞(G,A), C admits
a representation in terms of some group of isometries acting on that subspace.

Reusing our earlier notation (cf. (5.13)), given s ∈ G, we denote by Ts the operator
of translation by s on ℓ∞(G,A), defined by

(Tsx)(t) = x(t+ s) (x ∈ ℓ∞(G,A), t ∈ G).

Clearly, Ts is a surjective linear isometry, with inverse T−s. Note that, since

∥C (s)∥ ≤ ∥C (s)− c(s)eA∥+ |c(s)| ∥eA∥ ≤ γ(Gd, c)− ϵ+ 1

for all s ∈ G, C = {C (s)}s∈G is bounded, or equivalently, C is a member of ℓ∞(G,A).
Let Z be the linear space of all functions z in ℓ∞(G,A) of the form

z =

n∑
k=1

αkTskC ,

where αk ∈ C and sk ∈ G for k = 1, . . . , n. It is clear that Z is invariant under Ts for
every s ∈ G. For each s ∈ G, let

T̃s = Ts↾Z .

The family T̃ = {T̃s}s∈G is a group in the normed algebra L (Z). Moreover, since
∥T̃s∥ ≤ 1, ∥T̃−s∥ ≤ 1, and 1 = ∥IZ∥ ≤ ∥T̃s∥ ∥T̃−s∥ for every s ∈ G, we have ∥T̃s∥ = 1 for
every s ∈ G.

For each s ∈ G, if z is a member of Z, z =
∑n

k=1 αkTskC , where αk ∈ C and sk ∈ G

for k = 1, . . . , n, and if t ∈ G, then

(C(s)z)(t) = C (s)

n∑
k=1

αkC (t+ sk)

=
1

2

( n∑
k=1

αkC (t+ sk + s) +

n∑
k=1

αkC (t+ sk − s)
)

=
1

2
(Tsz + T−sz)(t).

Thus Z is an invariant subspace for C(s), and we have

C(s)↾Z = 1
2 (T̃s + T̃−s). (6.3)

Let B0 be the subalgebra of L (Z) generated by the T̃s’s. Obviously, B0 is a unital,
commutative normed algebra, with IZ as the identity element. For each s ∈ G, let

C̃(s) := C(s)↾Z .

In view of (6.3), C̃ = {C̃(s)}s∈G is a cosine family in B0, and, on account of (6.2),

∥C̃(s)− c(s)IZ∥ ≤ γ(Gd, c)− ϵ

for all s ∈ G.

Step 3. We now work with C̃ and T̃ to obtain the main conclusion.
Let B denote the completion of B0, complexified if B0 is real. Clearly, B is a unital,

commutative Banach algebra, and its identity element can be naturally identified with IZ .
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We first argue that, for each ϕ ∈ ∆(B), the mapping G ∋ s 7→ ϕ(T̃s) ∈ C is a character
on G, and that

c(s) = 1
2 (ϕ(T̃s) + ϕ(T̃−s)) (s ∈ G). (6.4)

Indeed, if ϕ ∈ ∆(B), then

ϕ(T̃s+t) = ϕ(T̃sT̃t) = ϕ(T̃s)ϕ(T̃t)

for all s, t ∈ G, and
ϕ(T̃0) = ϕ(IZ) = 1.

Moreover, for each s ∈ G,
|ϕ(T̃s)| ≤ ∥ϕ∥ ∥T̃s∥ = 1,

where again we used the fact that ∥ϕ∥ = 1. This implies, by an argument already familiar
from the proof of Theorem 5.6, that |ϕ(T̃s)| = 1 for every s ∈ G. Thus s 7→ ϕ(T̃s) is
in fact a character on G. Applying (i) and (ii)(b) of Proposition 6.1, we now see that
s 7→ (ϕ(T̃s) + ϕ(T̃−s))/2 is a bounded cosine function. Moreover, for each s ∈ G,∣∣ 1

2 (ϕ(T̃s) + ϕ(T̃−s))− c(s)
∣∣ = ∣∣ϕ( 1

2 (T̃s + T̃−s)− c(s)IZ
)∣∣

≤ ∥ϕ∥ ∥C̃(s)− c(s)IZ∥ ≤ γ(Gd, c)− ϵ.

Invoking the definition of γ(Gd, c), we conclude that (6.4) holds.
Select, arbitrarily, ψ ∈ ∆(B), and denote the corresponding character s 7→ ψ(T̃s)

by χ. Then, on the one hand, we have the representation of c as per (6.4) with an
arbitrary character of the form s 7→ ϕ(T̃s), ϕ ∈ ∆(B), and, on the other hand, we have
the representation

c(s) = 1
2 (χ(s) + χ(−s)) (s ∈ G)

as a particular case of (6.4). Applying (ii)(a) of Proposition 6.1, we infer that the following
holds: if ϕ ∈ ∆(B), then ϕ(T̃s) = χ(s) for all s ∈ G or ϕ(T̃s) = χ(−s) for all s ∈ G.

Fix s ∈ G arbitrarily. By the observation just made and the characterisation of the
spectrum of an element of a unital, commutative Banach algebra referred to earlier,

σB(T̃s) = {ϕ(T̃s) | ϕ ∈ ∆(B)} ⊂ {χ(s), χ(−s)}.
Since T̃s is doubly power bounded (recall that ∥T̃s∥ = 1 and ∥T̃−1

s ∥ = ∥T̃−s∥ = 1), it
follows from Proposition 6.3 that there exists an idempotent Es in B such that

T̃s = χ(s)Es + χ(−s)(IZ − Es).

Note in passing that, if σB(T̃s) consists of a single element, then Es is either zero or equal
to IZ . Since(

χ(s)Es + χ(−s)(IZ − Es)
)(
χ(−s)Es + χ(s)(IZ − Es)

)
= E2

s + χ(−2s)(IZ − Es)Es + χ(2s)Es(IZ − Es) + (IZ − Es)
2

= E2
s + (IZ − Es)

2 = Es + IZ − Es = IZ ,

and since χ(s)Es + χ(−s)(IZ − Es) and χ(−s)Es + χ(s)(IZ − Es) commute (as do any
other two elements of B), it follows that χ(−s)Es + χ(t)(IZ − Es) is the inverse of
χ(s)Es + χ(−s)(IZ − Es). We thus have

T̃−s = χ(−s)Es + χ(s)(IZ − Es).
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Consequently,

C̃(s) = 1
2

(
χ(s)Es + χ(−s)(IZ − Es) + χ(−s)Es + χ(s)(IZ − Es)

)
= c(s)IZ .

In particular, C̃(s)C = c(s)C . But, by definition of C̃(s) and (6.3),

(C̃(s)C )(0) = 1
2 (C (s) + C (−s)) = C (s),

and, independently,
(c(s)C )(0) = c(s)C (0) = c(s)eA.

Therefore C (s) = c(s)eA. Since s was arbitrary, the theorem is proved.

6.3. More on γ-numbers. In this section, we present several results concerning the
values of γ-numbers. Our discussion will not be as comprehensive as in the case of β-
numbers, but we shall still be able to cover a wide range of cases.

We start with a lemma generalising, in one direction, conclusion (ii)(a) of Proposi-
tion 6.1.

Let G be an Abelian group. Let ℓ∞(G) denote the space of all bounded, complex
functions on G, endowed with the uniform norm. A Banach mean on ℓ∞(G) is a complex
linear functional m on ℓ∞(G) such that:

(i) m(1G) = 1 = ∥m∥;
(ii) m(Tsf) = m(f) for each f ∈ ℓ∞(G) and each s ∈ G.

A familiar argument (see, e.g., [73, pp. 109–100]) shows that (i) implies

(iii) m(f) ≥ 0 whenever f ≥ 0 and f ∈ ℓ∞(G).

The concept of a Banach mean is a generalisation of that of a Banach limit [8]; see also,
e.g., [19, Theorem III.7.1]. The existence of Banach means for Abelian groups was estab-
lished by von Neumann [87], [88], and more generally for Abelian semigroups by Day [25];
see also [35, Theorem 1.2.1] or [38, Theorem 17.5]. Abelian groups and semigroups are
examples of amenable groups and semigroups. A group or semigroup (discrete or topo-
logical) is called amenable if there is a Banach mean on a suitable space of bounded
functions on that group or semigroup (such as ℓ∞(G) or L∞(G) in the case of a group G)
[35], [67], [68].

Lemma 6.4. If G is an Abelian group and if χ1, χ2 ∈ Ĝd are such that

∥χ1 + χ1 − (χ2 + χ2)∥∞ < 2,

then χ1 = χ2 or χ1 = χ2.

Proof. Let m be a Banach mean on ℓ∞(G). For each ψ ∈ Ĝd, we have

m(ψ) =

{
1 if ψ = 1G,
0 otherwise.

(6.5)

This identity is established with a well-known argument which for convenience we repro-
duce here (cf. the proof of [72, Theorem 1.2.5]). The case ψ = 1G is clear. If ψ ̸= 1G,
then ψ(s0) ̸= 1 for some s0 ∈ G, and so

m(ψ) = m(Ts0ψ) = ψ(s0)m(ψ),

whence m(ψ) = 0.
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Assume towards a contradiction that χ1 ̸= χ2 and χ1 ̸= χ2. Then each of the charac-
ters χ1χ2, χ1χ2, χ1χ2, and χ1χ2 is non-trivial, and, in view of (6.5),

m(χ1χ2) = m(χ1χ2) = m(χ1χ2) = m(χ1χ2) = 0.

Since, by (6.5), m(ψ) ≥ 0 for all ψ ∈ Ĝd, we in particular have m(χ2
1) ≥ 0, m(χ2

1) ≥ 0,

m(χ2
2) ≥ 0, and m(χ2

2) ≥ 0. Taking into account that

(χ1 + χ1 − (χ2 + χ2))
2
= χ2

1 + χ2
1 + χ2

2 + χ2
2 − 2(χ1χ2 + χ1χ2 + χ1χ2 + χ1χ2) + 4,

we see that
m
(
(χ1 + χ1 − (χ2 + χ2))

2
)
≥ 4.

On the other hand,

m
(
(χ1 + χ1 − (χ2 + χ2))

2
)
≤ ∥(χ1 + χ1 − (χ2 + χ2))∥2∞ < 4,

where the rightmost inequality holds by assumption. This contradiction establishes the
lemma.

We are now ready to state our first, though just preliminary, result.

Theorem 6.5. If G is a non-zero, locally compact Abelian group and if c ∈ Cos(G), then
γ(G, c) ≥ 1.

Proof. Assume to the contrary that γ(G, c) < 1. Then there exists c̃ ∈ Cos(G) different
from c such that ∥c− c̃∥∞ < 1. By (i) and (ii)(b) of Proposition 6.1, there exist χ and χ̃
in Ĝ such that

c = 1
2 (χ+ χ) and c̃ = 1

2 (χ̃+ χ̃),

respectively. An application of Lemma 6.4 now shows that either χ = χ̃ or χ = χ̃. In
both cases c = c̃. This contradiction establishes the result.

The above theorem can be considerably strengthen based on the following result due
to Esterle:

Proposition 6.6. If c ∈ Cos(Z), then γ(Z, c) ≥
√
5/2.

The full version of Esterle’s result [31, Theorem 3.14] gives the value of γ(Z, c) for every
member c of Cos(Z), and, in particular, identifies all those bounded cosine sequences c
for which γ(Z, c) =

√
5/2.

The generalisation of Theorem 6.5 just alluded to goes as follows.

Theorem 6.7. If G is a non-zero, locally compact Abelian group and if c ∈ Cos(G), then
γ(G, c) ≥

√
5/2.

Proof. If c̃ ∈ Cos(G) \ {c} and if s ∈ G is such that c̃(s) ̸= c(s), then {c̃(ns)}n∈Z and
{c(ns)}n∈Z are two different cosine sequences, and we have

∥c̃− c∥∞ ≥ sup
n∈Z

|c̃(ns)− c(ns)| ≥ γ(Z, {c(ns)}n∈Z).

Hence γ(G, c) ≥ γ(Z, {c(ns)}n∈Z), and the result now is a consequence of Proposi-
tion 6.6.

The following proposition is a particular case of a much more general result of Schwen-
ninger and Zwart [76, Theorem 3.2]:
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Proposition 6.8. We have γ(Z, 1Z) = 3/2.

For each ω ∈ R, we denote by cω the function s 7→ cosωs. It is a well-known fact that

Cos(R) = {cω | ω ∈ R};

see, e.g., [2, §8, Theorem 1].
The following result has been established by Bobrowski et al. [14, Theorem 1 and

Remark 1] and, independently, by Esterle [30, Lemma 3.5]:

Proposition 6.9. If ω ∈ R \ {0}, then γ(Rd, cω) = γ(R, cω) = 8/(3
√
3).

The following result is due to Chojnacki [18, Lemma 2] and Esterle [30, Corollary 3.7]:

Proposition 6.10. We have γ(Rd, 1R) = γ(R, 1R) = 2.

The rest of the section will be devoted to exploring under what conditions on G the
equality γ(Gd, c) = γ(G, c) holds for all c ∈ Cos(G).

Lemma 6.11. Let G be a locally compact, σ-compact, divisible Abelian group. If χ is a
discontinuous character on G, then every element of T is a limit of a net {χ(sα)}α∈A,
where {sα}α∈A is a net in G converging to 0.

Proof. Let C be the set of all limits of convergent nets of the form {χ(sα)}α∈A, where
{sα}α∈A is a net in G converging to 0. If c ∈ C and c = limα∈A χ(sα), where {sα}α∈A

is a net in G converging to 0, then c−1 = limα∈A χ(−sα) and {−sα}α∈A is a net in G

converging to 0. This shows that c−1 is in C. Suppose now that c and d are in C, and
that c = limα∈A χ(sα) and d = limβ∈B χ(tβ), where {sα}α∈A and {tβ}β∈B are nets in G
converging to 0. Equip A × B with the product order defined by (α1, β1) ⪯ (α2, β2)

whenever α1 ⪯ α2 and β1 ⪯ β2. Then {sαtβ}(α,β)∈A×B is a net in G converging to 0 and

lim
(α,β)∈A×B

χ(sαtβ) = lim
(α,β)∈A×B

χ(sα)χ(tβ) = lim
α∈A

χ(sα) lim
β∈B

χ(tβ) = cd.

This shows that cd belongs to C. We see that C is a group under multiplication. Clearly,
C is also a closed subset of T. Thus C is a closed subgroup of T, and as such it is either
finite or all of T (see, e.g., [61, Section 2, Corollary 3]).

Assume that the first possibility holds. Then there exists k ∈ N such that ck = 1 for
all c ∈ C. Fix c ∈ C arbitrarily, and let {sα}α∈A be a net in G converging to 0 such that
c = limα∈A χ(sα). The homomorphism

mk : G→ G, s 7→ ks,

is continuous, and, since G is divisible, it is surjective. Since G is σ-compact, it follows
from Pontryagin’s open mapping theorem (see, e.g., [38, Theorem 5.29]) that mk is open.
Let {Vι}ι∈I be a base of open neighbourhoods of 0 in G. Clearly, for each ι ∈ I,mk(Vι)∩Vι
is an open neighbourhood of 0. Equip A × I with the product order, and, for each
(α, ι) ∈ A × I, pick βα,ι ∈ A such that α ⪯ βα,ι and sβα,ι ∈ mk(Vι) ∩ Vι. Then the
net {sβα,ι

}(α,ι)∈A×I converges to 0 and lim(α,ι)∈A×I χ(sβα,ι
) = c. Moreover, for each

(α, ι) ∈ A×I, there exists tα,ι ∈ Vι such that ktα,ι = sβα,ι . Clearly, the net {tα,ι}(α,ι)∈A×I

converges to 0. By the compactness of T, there exists a subnet {tγ}γ∈Γ such that the net
{χ(tγ)}γ∈Γ converges. Consequently, d = limγ∈Γ χ(tγ) belongs to C. Clearly, c = dk. On
the other hand, d, as any other member of C, obeys dk = 1, so c = 1. Thus C = {1},
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and this implies that χ is continuous at 0, and hence everywhere on G, contrary to
assumption. It follows that the other possibility concerning the form of C holds, namely
C = T.

Lemma 6.12. Let G be a locally compact, σ-compact, divisible Abelian group. If c∈Cos(G)

and if c̃∈Cos(Gd) \ Cos(G) (so that c̃ is a discontinuous cosine function), then

lim sup
s→0

|c(s)− c̃(s)| = 2.

Proof. In view of (i), (ii)(b), and (ii)(c) of Proposition 6.1, there exists a discontinuous
character χ̃ on G such that

c̃(s) = 1
2 (χ̃(s) + χ̃(−s))

for each s ∈ G. By Lemma 6.11, there exists a net {sα}α∈A in G converging to 0 such
that limα∈A χ̃(sα) = −1. Now, limα∈A χ̃(−sα) = limα∈A χ̃(sα)

−1 = −1, and, as c is
continuous, limα∈A c(sα) = 1. Hence

lim
α∈A

∣∣c(sα)− 1
2 (χ̃(sα) + χ̃(−sα))

∣∣ = |c(sα)− c̃(sα)| = 2,

and further
lim sup

s→0
|c(s)− c̃(s)| ≥ 2.

But both c and c̃ are bounded by 1 in modulus, so in fact

lim sup
s→0

|c(s)− c̃(s)| = 2,

as was to be proved.

Theorem 6.13. Let G be a non-zero, locally compact, σ-compact, divisible Abelian group.
If c ∈ Cos(G), then γ(Gd, c) = γ(G, c).

Proof. By inspecting the definitions of γ(Gd, c) and γ(G, c), we see that

γ(Gd, c) = min
(
γ(G, c), inf

c̃∈Cos(Gd)\Cos(G)
sup
s∈G

|c(s)− c̃(s)|
)
.

By Lemma 6.12, sups∈G |c(s)− c̃(s)| = 2 whenever c̃ ∈ Cos(Gd) \Cos(G), so the equality
above reduces to

γ(Gd, c) = min(γ(G, c), 2).

But γ(G, c) ≤ 2, and therefore γ(Gd, c) = γ(G, c).

6.4. Relationship with homomorphisms. In this section, we relate γ-numbers to
homomorphisms from algebras of the form L1

e(G).
Let G be a locally compact Abelian group. Given f ∈ L1

e(G), the cosine Fourier
transform of f is the function c 7→ F cos

c (f) on Cos(G) defined by

F cos
c (f) =

∫
G

f(s)c(s) dmG(s) (c ∈ Cos(G)).

For each c ∈ Cos(G), the mapping F cos
c : f 7→ F cos

c (f) is a character on L1
e(G). Con-

versely, every character on L1
e(G) coincides with F cos

c (f) for some uniquely determined
c ∈ Cos(G) (see, e.g., [83, Theorem 14.12]). It is readily seen that F cos

1G is the fundamental
character on L1

e(G).
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Given s ∈ G, we denote by Cs the operator on L1
e(G) defined by

(Csf)(t) =
1
2 (f(t+ s) + f(t− s)) (f ∈ L1

e(G), a.e. t ∈ G).

It is straightforward to verify that {Cs}s∈G is a strongly continuous cosine family on
L1
e(G) and, moreover, that

Cs(f ⋆ g) = Csf ⋆ g = f ⋆ Csg

holds for all s ∈ G and all f, g ∈ L1
e(G).

Just like L1(G), the algebra L1
e(G) possesses an approximate identity {uι}ι∈I satis-

fying ∥uι∥1 = 1 for each ι ∈ I. To see that this indeed is the case, select an approximate
identity {fι}ι∈I for L1(G) such that fι ≥ 0 and ∥fι∥1 = 1 for each ι ∈ I (cf. [63, p. 377]).
For each ι ∈ I, set

uι(s) =
1
2 (fι(s) + fι(−s)) (s ∈ G).

It is then clear that, for each ι ∈ I, uι belongs to L1
e(G) and that {uι}ι∈I is an approximate

identity for L1
e(G) such that ∥uι∥1 = 1 for each ι ∈ I.

The following proposition can be proved in a fashion similar to the one used to estab-
lish Proposition 3.4.

Proposition 6.14. Let G be a locally compact Abelian group, and let A be a unital
normed algebra. Let H : L1

e(G) → A be a non-zero, continuous homomorphism. Then:

(i) there exists a unique cosine family C = {C (s)}s∈G on Ran(H) such that

C (s)H(f) = H(Csf)

for each s ∈ G and each f ∈ L1
e(G); the cosine family C is strongly continuous and

satisfies sups∈G ∥C (s)∥ ≤ ∥H∥;
(ii) if {uι}ι∈I is an approximate identity for L1

e(G), then

C (s)x = lim
ι∈I

H(Csuι)x (6.6)

for each s ∈ G and each x ∈ Ran(H);
(iii) with L denoting the left regular representation of A, the mapping (L ◦ H)↾Ran(H)

admits the representation(
(L ◦H)↾Ran(H)

)
(f)x =: H(f)x =

∫
G

f(s)C (s)xdmG(s) (6.7)

for each f ∈ L1
e(G) and each x ∈ Ran(H).

Theorem 6.15. Let G be a non-zero, locally compact Abelian group, and let A be a unital
normed algebra. If c ∈ Cos(G) and if H : L1

e(G) → A is a continuous homomorphism
such that ∥H − eA ⊗ F cos

c ∥ < γ(Gd, c), then there exists an idempotent e in A such that
H = e⊗ F cos

c .

Proof. As might be expected, the proof of this theorem is closely patterned on the proof
of Theorem 3.5.

Step 1. If H = 0, then ∥H − eA ⊗ F cos
c ∥ < γ(Gd, c), since ∥F cos

c ∥ = ∥c∥∞ = 1 implies
that ∥eA ⊗ F cos

c ∥ = ∥eA∥ ∥F cos
c ∥ = 1 and since γ(Gd, c) ≥

√
5/2 by Theorem 6.7. Also,

if H = 0, then H = 0⊗Fχ, where the last 0 is the zero element of A. Thus the theorem
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holds when H is zero. Suppose from now on that H is non-zero. Choose a contractive
approximate identity {uι}ι∈I for L1

e(G). Let {C (s)}s∈G be the cosine family on Ran(H)

whose existence is guaranteed by Proposition 6.14. If s ∈ G, if x ∈ Ran(H), and if ι ∈ I,
then

∥H(Csuι)x− (eA ⊗ F cos
c )(Csuι)x∥ ≤ ∥H − eA ⊗ F cos

c ∥ ∥Csuι∥1∥x∥
≤ ∥H − eA ⊗ F cos

c ∥ ∥x∥. (6.8)

Since c is continuous, we have limι∈I F cos
c (Csuι) = c(s), and so

lim
ι∈I

(eA ⊗ F cos
c )(Csuι)x = c(s)x.

Combining this with (6.6), we deduce from (6.8) that

∥C (s)x− c(s)x∥ ≤ ∥H − eA ⊗ F cos
c ∥ ∥x∥.

Hence
sup
s∈G

∥C (s)− c(s)IRan(H)∥ ≤ ∥H − eA ⊗ F cos
c ∥.

This together with the assumption that ∥H − eA ⊗ F cos
c ∥ < γ(Gd, c) yields

sup
s∈G

∥C (s)− c(s)IRan(H)∥ < γ(Gd, c).

An application of Theorem 6.2 now implies that C (s) = c(s)IRan(H) for all s ∈ G, and
further, by (6.7), that

H(f)x = F cos
c (f)x (6.9)

for all f ∈ L1
e(G) and all a ∈ Ran(H).

Step 2. If f ∈ L1
e(G), then

H(f) = lim
ι∈I

H(uι)H(f) = lim
ι∈I

H(f)H(uι). (6.10)

For each ι ∈ I, putting x = H(uι) in (6.9) yields

H(f)H(uι) = F cos
c (f)H(uι).

Combining this with (6.10), we find that

H(f) = lim
ι∈I

F cos
c (f)H(uι). (6.11)

Now, arguing as in the proof of Theorem 3.5, we conclude that the limit limι∈I H(uι)

exists and is an idempotent in Ran(H). This together with (6.11) establishes the theo-
rem.

6.5. Applications. We now combine together various results from the last and previous
sections to draw conclusions regarding isolability properties of homomorphisms.

The following theorem is an immediate consequence of Theorems 6.7 and 6.15.

Theorem 6.16. Let G be a non-zero, locally compact Abelian group, and let A be a unital
normed algebra. If c ∈ Cos(G) and if H : L1

e(G) → A is a continuous homomorphism
such that ∥H − eA ⊗ F cos

c ∥ <
√
5/2, then there exists an idempotent e in A such that

H = e⊗ F cos
c .
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Combining Theorem 6.16 with Theorem 2.16 and the fact that ∥F cos
c ∥ = 1 for each

c ∈ Cos(G), we obtain the following theorem.

Theorem 6.17. Let G be a non-zero, locally compact Abelian group, and let A be a unital
normed algebra. If c ∈ Cos(G), then eA ⊗ F cos

c : L1
e(G) → A is totally isolated.

We also immediately deduce the following result (cf. the proof of Theorem 5.23).

Theorem 6.18. Let G be a non-zero, locally compact Abelian group, and let A ∈ Awni. If
c ∈ Cos(G) and if H : L1

e(G) → A is a non-zero homomorphism such that ∥H−eA⊗F cos
c ∥

< γ(Gd, c), then H = eA ⊗ F cos
c .

Applying Theorem 6.18 with c equal to 1G, we obtain the following theorem.

Theorem 6.19. If G is a non-zero, locally compact Abelian group, then γ(Gd, 1G) ≤
α(L1

e(G)).

Combining this theorem with Theorem 6.7 yields the following corollary.

Corollary 6.20. IfG is a non-zero, locally compact Abelian group, then α(L1
e(G))≥

√
5/2.

The following theorem is a partial converse to Theorem 6.19.

Theorem 6.21. If G is a non-zero, locally compact Abelian group, then α(L1
e(G)) ≤

γ(G, 1G).

Proof. The proof is similar to that of Theorem 5.26. For each c ∈ Cos(G), F cos
c is a

non-zero homomorphism from L1
e(G) into C and

∥F cos
c − F cos

1G ∥ = sup
s∈G

|c(s)− 1|. (6.12)

Moreover, if c ̸= 1G, then F cos
c ̸= F cos

1G . Since F cos
1G is the fundamental character on

L1
e(G) and since C is an algebra with no non-trivial idempotents, it follows that

α(L1(G)) ≤ inf
c∈Cos(G)\{1G}

∥F cos
c − F cos

1G ∥.

In view of (6.12), this implies that α(L1
e(G)) ≤ γ(G, 1G).

Combining Theorems 6.19 and 6.21 leads immediately to the following result.

Theorem 6.22. If G is a non-zero, locally compact Abelian group such that γ(Gd, 1G) =

γ(G, 1G), then α(L1
e(G)) = γ(G, 1G).

In turn, the following theorem is an immediate consequence of Theorems 6.13 and 6.22.

Theorem 6.23. If G is a non-zero, locally compact, σ-compact, divisible Abelian group,
then α(L1

e(G)) = γ(G, 1G).

Since, for a non-zero, discrete Abelian group G, there is no distinction between
γ(Gd, 1G) and γ(G, 1G), we readily obtain the following theorem.

Theorem 6.24. If G is a non-zero, discrete Abelian group, then α(ℓ1e(G)) = γ(G, 1G).

Corollary 6.25. We have:

(i) α(ℓ1e(Z)) = 3/2;
(ii) α(ℓ1e(R)) = 2;
(iii) α(L1

e(R)) = 2.
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Proof. Statement (i) follows from Proposition 6.8 and Theorem 6.24, statement (ii) fol-
lows from Proposition 6.10 and Theorem 6.24, and statement (iii) follows from Proposi-
tion 6.10 and Theorem 6.22.

Theorem 6.15 and Propositions 6.9 and 6.10 yield the following result.

Theorem 6.26. Let A be a unital normed algebra. If c ∈ Cos(R) and if H : L1
e(R) → A

is a continuous homomorphism such that

∥H − eA ⊗ F cos
c ∥ <

{
8

3
√
3

if c ̸= 1R,

2 if c = 1R,

then there exists an idempotent e in A such that H = e⊗ F cos
c .

Remark 6.27. In general, ‘<’ in Theorem 6.26 cannot be replaced by ‘≤’. To see that this
indeed is so, suppose that A is a unital normed algebra with a non-trivial idempotent
f of norm 1 (cf. Remark 2.8). Consider first the case c ̸= 1R. Then c = cω for some
ω ∈ R \ {0}. Let H : L1

e(R) → A be the homomorphism given by

H = (eA − f)⊗ F cos
cω + f ⊗ F cos

c3ω .

Since
H − eA ⊗ F cos

c = f ⊗ (F cos
c3ω − F cos

cω ),

it follows that

∥H − eA ⊗ F cos
c ∥ = ∥f∥ ∥F cos

c3ω − F cos
cω ∥ = sup

t∈R
|cos 3ωt− cosωt| = 8

3
√
3
;

see [14, Lemma 1] for the rightmost equality. This together with the fact that H is not of
the form e⊗F cos

c , where e is an idempotent of A, shows that ‘<’ in the upper inequality
in Theorem 6.26 cannot be replaced by ‘≤’.

Consider now the case c = 1R. Let H : L1
e(R) → A be the homomorphism given by

H = (eA − f)⊗ F cos
1R

+ f ⊗ F cos
c1 .

Since
H − eA ⊗ F cos

c = f ⊗ (F cos
c1 − F cos

1R
),

it follows that

∥H − eA ⊗ F cos
c ∥ = ∥f∥ ∥F cos

c1 − F cos
1R

)∥ = sup
t∈R

|cos t− 1| = 2.

This together with H not being of the form e ⊗ F cos
c , where e is an idempotent of A,

shows in turn that ‘<’ in the lower inequality in Theorem 6.26 cannot be replaced by ‘≤’.
The argument is complete.

Let X be a complex normed algebra such that ∆(X) ̸= ∅. For each δ > 0, we introduce
the following condition on X:

(Cδ) if A is a unital normed algebra, if ϕ ∈ ∆(X), and if H : X → A is a continuous
homomorphism such that ∥H − eA ⊗ ϕ∥ < δ, then there exists an idempotent e in
A such that H = e⊗ ϕ.

A straightforward argument yields the following result.
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Theorem 6.28. For each δ > 0, satisfaction of (Cδ) is invariant under isomorphic
isomorphisms of normed algebras.

We are now in a position to prove our final theorem.

Theorem 6.29.

(i) L1(R) and L1
e(R) are not isometrically isomorphic as normed algebras.

(ii) ℓ1(R) and ℓ1e(R) are not isometrically isomorphic as normed algebras.

Proof. (i) Since β(Rd) = 2 by Theorem 5.15, we can apply Theorem 5.20 to conclude that
L1(R) satisfies (C2). Let A be a unital normed algebra with a non-trivial idempotent f
of norm 1. Choose ω ∈ R \ {0} and let H : L1

e(R) → A be the homomorphism given by

H = (eA − f)⊗ F cos
cω + f ⊗ F cos

c3ω .

The argument from Remark 6.27 shows that

∥H − eA ⊗ F cos
cω ∥ =

8

3
√
3
.

Since H is not of the form e ⊗ F cos
cω , where e is an idempotent of A, it follows that

L1
e(R) does not satisfy (Cδ) for any δ > 8/(3

√
3), and, in particular, that L1

e(R) does not
satisfy (C2). Now, to complete the argument, it suffices to invoke Theorem 6.28.

(ii) The proof mimics closely the proof of the preceding statement. First, Theo-
rems 5.15 and 5.20 ensure, like before, that ℓ1(R) satisfies (C2). Second, if A is a unital
normed algebra with a non-trivial idempotent f of norm 1, if ω is a non-zero real number,
and if H : ℓ1e(R) → A is the homomorphism given by

H = (eA − f)⊗ F cos
cω + f ⊗ F cos

c3ω ,

where F cos
cω and F cos

c3ω are this time viewed as characters on ℓ1e(R), then, as earlier,

∥H − eA ⊗ F cos
cω ∥ =

8

3
√
3
.

This implies that ℓ1e(R) does not satisfy (Cδ) for any δ > 8/(3
√
3), and, in particular,

that ℓ1e(R) does not satisfy (C2). An appeal to Theorem 6.28 now finishes the proof.

7. Closure

We close by offering a kind of symbolic summary of the developments presented in the
memoir. For this we detail nine ordered AL-algebras, no two of which are isometrically
algebra and order isomorphic. The algebras are listed in the first column of Table 2. The
remaining columns contain attributes enabling unique identification of the isomorphism
type of each of the algebras listed. Finding differences between various isomorphism types
is straightforward.
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Table 2. Comparison of nine ordered AL-algebras

separable unital α (C2)

ℓ1(Z+) + + 1

ℓ1(Z) + +
√
3

ℓ1e(Z) + + 3/2
ℓ1(R+) − + 1
ℓ1(R) − + 2 +
ℓ1e(R) − + 2 −
L1(R+) + − 1
L1(R) + − 2 +
L1

e(R) + − 2 −
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ERRATA

Page, line For Read

2311 Theorem 11.31 Theorem 11.32
247 ∥uι∥ ∥uι∥1
242 ∥uι∥ ∥uι∥1
281 IB IRan(H)

297 ∗ ⋆
2920, in two instances ∗ ⋆
2921, in two instances ∗ ⋆
387, in three instances ∗ ⋆
396, in two instances ∗ ⋆

391 ∗ ⋆
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