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1. Introduction

Let G be a locally compact Abelian group with group operation denoted additively,
and let 4 be an algebra with identity over the field C of complex numbers. A homomorphism
from G into A4 is a mapping 4 : G — A satisfying both Cauchy’s functional equation

Ya+b)=%)%b) (a,beq)
and the condition

40) =e,

where 0 denotes the neutral element of G and e denotes the identity of 4. An A-valued
cosine function on G is a mapping ¥ : G — A satisfying both d’Alembert’s functional
equation

(1.1) Cla+b)+€a—b)=2%)é®b) (a,bei)

and the condition
€0)=e.

A cosine function € : G — A has a group representation if there is a homomorphism
4 : G — A such that, for each a € G,

1
(1.2) ‘g(a)=§(€4(a)+g(—a)).
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A semitopological algebra is an algebra equipped with a topology such that the underlying
vector space is locally convex and Hausdorff, and the multiplication operation is separately
continuous. Henceforth we shall assume that A4 is a semitopological algebra with identity.
If :G - A is a continuous cosine function such that (1.2) holds for a continuous
homomorphism % : G — A, we say that € has a regular group representation. We recall
that a mapping with values in a topological vector space is bounded if the image of this
mapping is bounded. If € : G — A4 is a bounded (continuous) cosine function such that
(1.2) holds for a bounded (continuous) homomorphism 4 : G — A, then ¥ will be said to
have a bounded (regular) group representation. Given a locally convex vector space E, we
denote by £ (E) the algebra of all linear continuous operators in E. We shall always
consider & (E) as being equipped with the strong operator topology. Under this topology,
ZL(E) is a semitopological algebra. A homomorphism from G into .#(E) will often be
referred to as a representation of G in E. An % (E)-valued cosine function will at times
be referred to as a cosine function in E. Note that if E is either a Banach space or the
dual of a Banach space under the x-weak topology, and if f'is a function from a set S into
Z (E), then, as recourse to the Banach-Steinhaus theorem shows, fis bounded if and only
if it is bounded in norm; that is, sup || f(s)|| < + c0.
ses

This paper deals with the problem of group representability of cosine functions. In
the context of operator-valued cosine functions, the problem arose out of a study of the
Cauchy problem for second order abstract differential equations. Such a study is greatly
facilitated when suitable cosine functions defined on the group R of real numbers and
taking on values in .Z (E), where E is a Banach space, have a regular group representation
(cf. [8], Section 2.5, [9], Section II1.6, [16], Section II1.1.1, [18]). In general, unbounded
continuous cosine functions, even as simple as those taking on values in finite-dimensional
algebras, may fail to admit a regular group representation; for example, the & (C?)-valued

cosine function on R given by
1 22
-
0 1

has no regular group representation (cf. [14]). Contrasting with this is a result of [3]
stating that every % (H)-valued bounded continuous cosine function on G, H being a
Hilbert space and G being a locally compact Abelian group, has a regular group repre-
sentation. Here the appeal to a Hilbert space structure is essential. In fact, Kisynski [14],
[15] and Fattorini [7] (see also [9], Section III.8) exhibited various .# (E)-valued bounded
cosine functions on R that have no regular group representation, where E are Banach
spaces consisting of odd functions or of odd measures on R equipped either with the norm
topology or with the x-weak topology.

In the development that follows, we characterise — in purely algebraic terms — the
class of all locally compact Abelian groups G such that every bounded continuous cosine
function on G with values in a sequentially complete semitopological algebra with identity
has a regular group representation. We also characterise the class of all locally compact
Abelian groups G such that every bounded cosine function on G with values in a sequentially
complete semitopological algebra with identity has a bounded regular group representation.
It will follow from these characterisations that the group Z of integers is in the former
class but not in the latter. It will also become apparent that R is in none of the two classes.
The latter result (which, of course, can also immediately be deduced from the above-
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mentioned results of Kisynski and Fattorini) will be a consequence of the existence of a
number of Z (E)-valued bounded continuous cosine functions on R admitting no regular
group representation, where E are Banach spaces consisting of even functions or of even
measures on R equipped either with the norm topology or with the x-weak topology. Here
the appeal to even functions and measures is representative of the approach adopted in
handling arbitrary locally compact Abelian groups. It turns out that the use of such
functions and measures renders the analysis of certain crucial cosine functions a relatively
easy task.

The remainder of the paper is organised as follows. Section 2 introduces the concepts
of a c-group and of a be-group, and reduces the main representability problem to that of
characterisation of the classes comprising all c-groups and all bc-groups. Section 3 gives
necessary conditions for a given group to be a c-group or to be a bc-group. Section 4 is
concerned with compact Abelian groups that are decomposable in a certain sense. The
results of that section are used in Section 5 to demonstrate that the sufficient conditions
from Section 3 are also necessary. Finally, Section 6 indicates some applications of the
results obtained to a study of single operators in Banach spaces.

2. Group representations

In this section, we present our main results concerning group representability of
bounded cosine functions. We show that the representability problem can be reduced to
a question from harmonic analysis. Being of independent interest, this question will be
the subject of a detailed analysis in the subsequent sections. We begin our considerations
by introducing some notation and terminology.

Let G be an Abelian group. For subsets 4 and B of G, and an element a of G, we let

—A={geG: —ge A},
A+a={geG:g—ae A},
A+B={geG:g=a+bforacAand be B}.

For ne N with n = 2, we denote by m, the homomorphism from G into itself given by
m,(a) =na (aeG).

We designate by G and G, the image and kernel of m,, respectively. If H is an Abelian
group, we use G ~ H to indicate that G and H are isomorphic. If G and H are locally
compact, we write G =~ H to indicate that G and H are topologically isomorphic. If H is
a subgroup of G, then G/H denotes the corresponding quotient group. If G is locally
compact and H is closed, then G/H will be assumed to have the quotient topology under
which this quotient group is locally compact. If {G,},; is an indexed collection of Abelian
groups, we write || G; for the direct product of the G;. If I = {1,..., n}, we also write

iel
G, x -+ x G, in place of [] G;. The subgroup of all sequences {x;},., in [| G, such that
iel iel
x; = 0 for all but finitely many i e [ is written [ [*G; and is referred to as the weak direct

iel
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product of the groups G;. If m is a cardinal number and if, for some fixed G, G, = G for
each /eI, where [ is a set of cardinality equal to m, we write G™ for [[ G; and G™ for

iel
[ [*G;. Direct products of locally compact Abelian groups will be assumed to have the
iel
product topology. We recall that, for an indexed collection {G};., of locally compact
Abelian groups, [] G, is a locally compact Abelian group if an only if G, is compact for

iel
all but finitely many i e I.

Hereafter we shall assume that G is a locally compact Abelian group. We shall denote
by B(G) the g-algebra of all Borel subsets of G. If a € G, then J, will stand for the Dirac
measure on G concentrated at a. We denote by M (G) the space of all complex bounded
regular Borel measures on G. With the norm || u|| = | 1|(G), where |u| denotes the total
variation of the measure ue M(G), M(G) is a Banach space. M(G) is also a Banach
algebra with identity under the convolution multiplication

(u*v)(E) = [ p(E—a)dv(a) (u,ve M(G), EcB(G))

and with J, as identity. We designate by M,(G) the Banach algebra of all atomic measures
in M(G). A measure u e M(G) will be termed even if

H(E) = pu(—E) (E€B(G)).

The even measures belonging to M(G) form a Banach algebra that will be denoted by
M (G). M, (G) will signify the Banach algebra of all atomic measures in M, (G).

There exists a natural cosine function ¢ on G taking on values in M,, (G) defined by
1
€ (a) = 5(5,, +4d_,) (ae@).

& will be referred to as the basic cosine function on G.
A mapping Goa+> v, € M(G) will be called a homomorphism if
(2.1) VoV, =V, 4,

for any a,be G. A homomorphism G3a+>v,e M(G) will be said to be bounded if
sup ||v,|]| < + 0. A homomorphism G3a+> v, e M, (G) will be termed a c-homomorphism
aeG

(the “c” is for ‘“‘cosine’) if
(2.2) Vv, +Vv_,=0,+0_,
for each ae G. A locally compact Abelian group that admits a c-homomorphism will be

called a c-group. A locally compact Abelian group admitting a bounded c-homomorphism
will be called a be-group.
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In the forthcoming discussion of group representability of bounded cosine functions,
c-groups and be-groups will play a crucial role. Prior to presenting details, we state two
fundamental theorems about the shape of c-groups and bc-groups. Much of the paper will
be devoted to proving these results.

Theorem 2.1. A locally compact Abelian group G is a c-group if and only if G is
either a countable torsion group or a group isomorphic with Z x F, where F is a finite Abelian
group.

Theorem 2.2. A locally compact Abelian group G is a be-group if and only if G is
finite.

Note that, by virtue of Theorems 2.1 and 2.2, the class of c-groups is essentially
larger than that of be-groups. In fact, the group Z is in the former class but not in the
latter.

It is clear from the definition of a c-homomorphism that a given locally compact
Abelian group G is a c-group if and only if the basic cosine function on G has a group
representation. Similarly, a locally compact Abelian group G is a be-group if and only if
the basic cosine function on G has a bounded group representation. As we shall see shortly,
these statements are particular cases of much stronger results (cf. Theorems 2.3, 2.4, and 2.5).

We start with a technicality.

Proposition 2.1.  Let G be a locally compact Abelian group such that G is countable,
and let A be a semitopological algebra with identity. Then every group representation of a
A-valued continuous cosine function on G is regular.

Proof. Since G/G,, ~ G?, it follows that G/G,,, is countable, and so, by Baire’s
theorem for locally compact regular spaces (cf. [13], § 5.28), G/G,,, is discrete. Thus G,
is an open subgroup of G. Let ¥ : G — A4 be a continuous cosine function, andlet % : G — 4
be a homomorphism satisfying (1.2). If a€ G,,, then a = — a, and so % (a) = ¥ (a). Hence,
since ¥ is continuous, ¥ is continuous on G,,. Now that G,, is an open neighbourhood
of 0 in G and the multiplication operation of A is separately continuous, it is easy to see
that ¢ is continuous on the whole of G. O

We have the following fundamental result:

Theorem 2.3. Let A be a sequentially complete semitopological algebra with identity.
If a locally compact Abelian group G is a c-group, then every A-valued bounded continuous
cosine function on G has a regular group representation. Similarly, if a locally compact
Abelian group G is a be-group, then every A-valued bounded continuous cosine function on
G has a bounded regular group representation.

Proof. Let G be a locally compact Abelian group admitting a c-homomorphism
Gsar v,e M, (G), and let ¥: G — A be a bounded continuous cosine function. For
each a € G, define an element ¥ (a) of A by setting
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G(a)= [ % (g)dv,(g).
G

Here, of course, the integral reduces to a series with (at most) countably many A4-valued
summands, and the series is convergent in view of the sequential completeness of 4 and
the boundedness of ¥ (we draw upon the standing assumption that the topology of 4 is
determined by a family of pseudonorms and is Hausdorff). In view of (1.1) and the
boundedness of €, the function G x G3 (g, h) — € (g) % (h) € A is bounded. Hence, since
the multiplication operation of A is separately continuous, it follows that

G@gb)= | €(@ECMmd,® v,)(g h

GxG
for any a, be G. Now, by (2.1) and the evenness of the v, (a € G),

[ 6@, ® vy)(g.h) = -

GxG

[ (€(g+h+%@Eg—h)dv, ® v,)(g h)
GXG

|

= | €@+hd0, ®v)(g h =[C@)dv,*v,)(g) =% (a+b).

GxG

Thus % : a — % (a) is a homomorphism from G into A. It is clear that ¢ is bounded if the
c-homomorphism a — v, is bounded. In view of (2.2) and the evenness of ¥, ¥ satisfies
(1.2). Finally, by Theorems 2.1 and 2.2 (which will be established later without recourse
to the theorem being proved), G? is at most countable, and so, by Proposition 2.1, ¥ is
continuous. 0O

Given a locally compact Abelian group G, let C,(G) be the space of all complex
continuous functions on G vanishing at infinity, and let C,(G) be the space of all complex
bounded uniformly continuous functions on G. Let 4; denote the Haar measure of G, let
L*(G) be the space of all classes of complex essentially bounded A;-measurable functions
on G, and let L' (G) be the space of all classes of complex functions which are A;-integrable
on G. Let Cy.(G), C,.(G), L*(G), and L.(G) be the spaces of all even elements of C,(G),
C,(G), L*(G), and L'(G), respectively. For a € G, let T, denote the operator of translation
by a defined for functions by (7, f)(b) = f(a + b) and for measures by T,u = pu*o_,. It
is obvious that each 7, defines a linear isometry of C,(G), C, (G), L*(G), L'(G), and
M (G). For ae G, let

23) €@=3(T+T.,).

Clearly, each % (a) defines a linear operator of unit norm on C,,(G), C,.(G), L?(G), L(G),
and M, (G), and moreover ¢ : a — % (a) is a cosine function in each of the spaces C.(G),
C,.(G), L2(G), LLX(G), and M,(G). € is continuous in Cy,(G), C,.(G), and LL(G) if each
of these spaces is equipped with the usual norm topology, and is also continuous in L% (G)
and M, (G) if each of the latter spaces is given the standard x-weak topology.

We are now in a position to state the following converse to Theorem 2.3:
Theorem 2.4. Let G be a locally compact Abelian group, and let € be the cosine

Sfunction on G given by (2.3). Then G is a c-group (bc-group) if any of the following statements
is valid:
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(i) €:G - L(M./G)) has a (bounded) group representation,
(i) €:G - L(LL(G)) has a (bounded) group representation;
(i) €: G - L(L*(G)) has a (bounded) group representation;
(iv) €:G > Z(C,.(G)) has a (bounded) group representation;
(V) €:G - L(Cy.(G)) has a (bounded) group representation.
Proof. 1f we add to the above list the statement:
(vi) G is a c-group (bc-group),

then, to prove the theorem, it will suffice to establish the validity of the following chain
of implications:

1) = (i) = (i) = @(Gv) = (v) = (vi).
Below we establish successively each of the implications forming the above chain.

(i) = (ii). Let ¢ be a representation of G in M,(G) such that (1.2) holds for the
% (M, (G))-valued cosine function . To prove that (ii) follows from (i), it suffices to show
that L!(G), regarded as a subspace of M,(G), is an invariant subspace for all the % (a)
(a € G). Fix a e G arbitrarily. Let fe L1 (G), and let V be an open symmetric neighbourhood
of 0in G. If be V, then

24 16D @f-%@fII=19@(@®) f=NI<IG@IIE®)S~fI.

Hereafter, adhering to the standard convention, we shall identify any given element k of
L'(G) with the measure that is absolutely continuous with respect to 4; and has k for
density. Now, for each g e L'(G) and each he L.(G), we have

gxh=[h®b)€©®)gdis(b),
G

where the right-hand side is to be interpreted as the Bochner integral of the function
Gob > h(b)¥(b)ge L'(G). In view of (2.4), for any non-negative 1;-measurable even

function ¢ on G with support in ¥ such that | ¢di; =1, we have
G

Q25 IE@f)xo—%@fl=I[o®(@E®B)%@f—%@/f)dis®)l
G
= Hg(a)lliggll‘g(b)f—fﬂ-
As L!(G)is anideal in M,(G), (%(a)f) * ¢ is an element of L(G). Clearly, sup W€ b)Y f— fl

tends to zero as V runs over a fundamental system of open symmetric neighbourhoods of
0 in G. Hence, in view of (2.5), 4(a)f is the limit of a net in L.(G) (with values of the



68 Chojnacki, Representations of cosine functions

form (% (a)f) * ). Since L(G) is closed in M, (G), it follows that % (a) f belongs to L!(G).
Thus LL(G) is an invariant subspace for all the 4 (a) (a € G).

(i) = (iii). Let ¢ be a representation of G in L!(G) such that (1.2) holds for the
#(L:(G))-valued cosine function 4. For a bounded linear operator T on LL(G), let T"
denote the dual of T acting on LY (G). Clearly, €': a+— % (a)’ is a cosine function in L2 (G),
%':a— %(a) is a representation of G in L2(G) such that (1.2) holds with €’ replacing €,
and ¥’ is bounded if and only ¢ is bounded. Since %’ coincides with the # (L (G))-valued
cosine function €, we see that the latter cosine function has a group representation which
may be assumed bounded if the .# (L!(G))-valued cosine function % has a bounded group
representation.

(iil) = (iv). Let ¥ be a representation of G in LY(G) such that (1.2) holds for the
Z(L*(G))-valued cosine function %. The implication (iii) = (iv) will follow once we show
that C,.(G), regarded as a subspace of LY(G), is an invariant subspace for all the % (a)
(a € G). To this end, we employ an argument analogous to the one used in establishing
the implication (i) = (ii). We suitably change spaces and norms, and choose ¢ to be
continuous so as to ensure that, for e G and fe C,.(G), (9(a) f) * ¢ is in C,.(G).

(iv) = (v). Let 4 be a representation of G in C,.(G) such that (1.2) holds for the
#(C,.(G))-valued cosine function %. To prove that (iv) follows from (v), it suffices to
show that C, (G), regarded as a subspace of C,.(G), is an invariant subspace for all the
%(a) (ae G). For each ae G, C,,(G)3f+— (%(a)f)(0) e C is a linear bounded functional
on C,.(G). By the Riesz representation theorem, there exists a unique v, € M, (G) such that

(% @f)0) = [ fav, (feCo.(G)).

Clearly ||v,|| £ 1|9 (a)||. Recall that for fe Cy(G) and p € M (G) the convolution f* u is the
element of C,(G) defined by

(f*w(@ = | fla=b)du®) (aeG).

Now, if fe C,.(G) and a, b € G, then, since ¥ (a) f and v, are even, we have
(%@ f)B) = (€)% (@ 1)0) = (@) )(0) = (f*v) (D).

Thus, for each a € G, the mapping f+ f * v, transforms C,.(G) into itself, and so C,(G)
is an invariant subspace for all the 4 (a) (a € G).

(v) = (vi). Let ¢4 be a representation of G in C,,(G) such that (1.2) holds for the

% (C,.(G))-valued cosine function €. By the argument from the previous paragraph, for
each a € G, there exists a unique v, € M, (G) such that

G@f=f*v, (feCo(G)
and ||v,|| = ||%(a)||. Hence, if a, b € Cy,(G), then

[*Vary=G@+ b =F@FB) [ =f*v,v,.
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We thus see that (2.1) holds. Analogously, (1.2) gets translated into (2.2). Let =, denote
the mapping from M(G) onto M,(G) that takes measures into their corresponding
atomic parts. As is known, r, is a contractive projection, is a homomorphism of convolu-
tion algebras, and maps M,(G) onto M, (G). A moment’s reflection shows that
Gsawn,(v,) € M, (G)is a cchomomorphism such that ||z, (v,)|| < ||%(a)|| for each a € G.
Consequently, G is a c-group, and when % is bounded, G is in fact a be-group. 0O

As an immediate consequence of Theorems 2.3 and 2.4, we obtain the following:

Theorem 2.5. Let G be a locally compact Abelian group. Consider the following
conditions:

(i) for every sequentially complete semitopological algebra A with identity, any A-valued
bounded continuous cosine function on G has a regular group representation,

(') for every Banach space E, any & (E)-valued bounded (strongly) continuous cosine
function on G has a regular group representation;

(i) for every sequentially complete semitopological algebra A with identity, any A-valued
bounded continuous cosine function on G has a bounded regular group representation;

(it") for every Banach space E, any ¥ (E)-valued bounded (strongly) continuous cosine
function on G has a bounded regular group representation.

Then conditions (1) and (') are equivalent and are satisfied if and only if G is a c-group;
similarly, conditions (ii) and (ii') are equivalent and are satisfied if and only if G is a be-group.
3. Characterising c-groups and bc-groups: sufficient conditions
The purpose of this section is to prove the sufficiency parts of Theorems 2.1 and 2.2.
Let G be a locally compact Abelian group. We denote by G the dual group of G.

The pairing between elements of G and G will be indicated by (-,-). Given a measure
ue M(G), we denote by fi the Fourier-Stieltjes transform of y, that is,

i) = [ (a, —y)du(a) (xeG).
G

Let @(G) be the set of all odd functions ¢ on G having the following properties:
@ ¢(G\@)p) = {—1,1} and 9((G)) = {0};
(i) for each a e G, there exists u, € M, (G) such that
(3.1) L) =01 —Qa,—p) (xeG).

Note that if ¢ € #(G) and G * (G),,), then ¢ (G \(G),) = {—1,1}.
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Proposition 3.1.  Let G be a locally compact Abelian group such that ®(G) is non-void,

and let ¢ be a function in ®(G). Retaining the notation from the definition above, for each
ae G, put

1
(3.2) V=3 (Butd gt iy,

Then the mapping G3a > v, € M, (G) is a c-homomorphism. If there exists p € M(G) such
that i = @, then that c-homomorphism is bounded.

Proof. By (3.1) and (3.2), for each a € G and each y € G,

T—o()
2

_1+eW

9,00 >

((1, X) + (a, —X) .

Taking into account that ¢ is an odd function mapping G \(G),,, into {—1, 1} and (G),,,
onto {0}, we see that, for each a € G and each y e G,
9,00 = (@, (1)

where

(e if xeG\(G)y,
() = {1 if xe(G))-

From this it follows that, for each a € G, v, is even and the mapping a — v, is a c-homo-
morphism of G.

If ¢ = [ for some u € M,(G), then, by (3.1), for each ae G we have u, = u — p * d,,,
whence ||y, || < 2||ull- Thus, on account of (3.2), the c-homomorphism a +— v, is bounded.
The result follows. 0O

Proposition 3.2. The set ®(2) is non-empty.

Proof. Denoting by T the multiplicative group of complex numbers with unit mo-
dulus, let ¢ be the function on T given by

1 if0<f<m,
0@E®) =< 0 if either 0=0 or 0 =n,
-1 if n<6<2m.

It is readily seen that ¢ has the Fourier expansion of the form

(p(ef")~i i sink+1)6 _ 2 1 Q2K+ 100
nZ, 2k+1 i oy 2k +1

Hence, if ae Z, then
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(p(e“’)(l —2m0) 2 ( 2k1 i ei(2k+1)0__ Z 2k1—|_1 ei(Z(k~a)+1)9>
kez

keZ

1
i(2k+1)0
m,EZ <2k+1 2k + a) +1> ¢

_4a 1
in ‘o Qk+1)2*k+a)+1)

i(2k+1)6

For each ae Z, let u, be the element of the space /' (Z) of all complex summable sequences
on Z defined by
0 if n=0 (mod?2),
(3 3) Uy (n) = 4a

m lfl’lEl(mOdZ)

Of course, /'(Z) can be identified with M, (Z), and so each yu, (a € Z) can be viewed as an
atomic measure on Z. Identifying in a standard way Z with T and applying the Fourier
inversion theorem, we obtain, for each ¢ € Z and each 0 £ 0 < 2m,

(€)= @ (") (1 — ™).
Hence p e #(Z). 0O

If G is a locally compact Abelian group, then by G, we mean G with the discrete
topology. By bG we denote the Bohr compactification of G.

Proposition 3.3.  Let G be a locally compact Abelian group. If ®((G,)") is non-empty,
then ®(G) is also non-empty.

Proof. Let ¢ € ®((G,)"). Since (G,)~ = b(G) and since G can canonically be embed-
ded into 5(G) (as a Borel subgroup; cf. [11]), we may meaningfully speak about the
restriction ¢, of ¢ to G. Clearly, ®,¢ 1s an odd function mapping G \(G)(z) into {—1,1}
and (G)(z) onto {0}. Since M, (G,) can be identified with M, (G), we see that, for each a € G,
there is u, € M,(G) such that (3.1) holds with ¢ replaced by ¢ ;. Hence ¢ g € ®(G). o

For a subgroup H of a locally compact AbelianA group G, we denote by H* the
annihilator of H in G, that is, the closed subgroup of G defined as

H*={yeG:(a,y)=1forallac H}.

Recall that if H is closed, then (G/H)~ =~ H* and H =~ G/H*. Note also that if H, and
H, are closed subgroups of G such that H, < H,, then (H,/H,)" =~ H{/H;. Indeed,
G/H, =(G/H,)/(H,/H,), and so Hj is topologically isomorphic with the annihilator of
H,/H, in(G/H,)", or equivalently with the annihilator of H,/H, in H{, which immediately
implies the desired relation.

Proposition 3.4. Let G be a locally compact Abelian group. Suppose that G contains
a closed subgroup H satisfying H® = G® and such that ®(H) is non-empty. Then &(G) is
non-empty.
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Proof. Let pe ®(H). Since G/H* ~ H, we may assume that v is a function on
G/H*. Let © be the canonical homomorphism from G onto G/H*. We have

(3.4 n Y ((G/HY) ) = (G)y, .

Indeed, a moment’s reflection shows that an element x of G belongs to n~ '((G/H l)(2)) if
and only if 2y € H* or, equivalently, if y e (H'®)*. Since H® = G?, the latter condition
is satisfied if and only if y € (G®)*, which in turn is equivalent to x € (G),,.

Let @ =yeom. Taking into account (3.4), we find that ¢ is an odd function on G such
that ¢ (G \(G),,)) = {—1,1}and ¢((G),,)) = {0}. Given h € H, let n, be a measure in M, (H)
such that

M) = v (1= 2h, —7))

for each y e G/H*, and let v, be the unique measure in M, (G), concentrated on H, whose
restriction to H coincides with #,. Then, for each s e H and each y e G,

(3.5) () = (1 = Q2h, —1)

(cf. [13], § 31.46). Now, given a € G, choose & € H so that 2a = 2k and set u, = v,. Using
(3.5), one verifies at once that (3.1) holds for each a € G. Consequently, ¢ is a member of
&(G). O

Proposition3.5. Let G be alocally compact Abelian group such that ®(G) is non-empty,
and let K be a locally compact Abelian group such that K'® is a singleton. Then @ ((G x K)*)
is non-empty.

Proof. The result follows immediately from the foregoing proposition upon taking
G x {0} for H. O

For any function f on a group G, we denote by /f the function on G given by

If(a) =f(—a) (ac@),

and, for any Borel measure x4 on G, we designate by Iu the Borel measure on G given by

IW(E) = p(—E) (EeB(G)).

Proposition 3.6. Let G be a countable torsion Abelian group with the discrete topology .
Then ®(G) is non-empty.

Proof. Let {F,},.n be a collection of finite subgroups of G such that F, < F,,; for
each neN and | ) F,=G. Then {F'},_y is a collection of closed subgroups of G such

neN
that F* o F}  foreachne Nand () F' = {0}. Givenn e N, F, is topologically isomorphic
neN

with G/F;* and has the same cardinality as F,. It follows that F* has finite index in G,
and is therefore an open subgroup of G. Taking into account that, for each y € G, x and
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—x belong to the same coset of F" if and only if y e m, '(F;"), one can easily define a
function f;: G —» {—1,0, 1} such that:

(@) f,(G\my '(FY) = {—1,1} and f, (m; '(F}")) = {0};
(i) f, is constant on the cosets of F* in G;
(i) f; is odd.

Since F;* is a subgroup of Fi" of finite index (for F/*/F} = (F,/F,)"), one can now define
a function f,: G —» {—1,0,1} such that:

@) f2(G\m; ' (FH) < {~1.1} and £, (m; '(F)) = {0}:
(i) f, is constant on the cosets of F; in G;

(iii) £, is odd;

(iv) f, =/, on G \m; '(F?).

Continuing the process, we obtain a sequence {f,},.,, of functions from G into {—1,0, 1}
such that for each ne N:

i) £(G\my (FH) = {=1,1} and £,(m; '(F")) = {0};
(i) f, is constant on the cosets of F* in G;

(iii) f, is odd;

(V) fos1 =1, on G\m; '(F}).

For each ne N, f, can be written as f, = g, - m,, where 7, is the canonical homomorphism
from G onto G/F, and g, is a unique function on G/F;. Since G/F;* = F, and since F,
is finite, g, can be identified with an element of M, (F,). Let v, be the unique measure in
M, (G), concentrated on F,, such that the restriction of v, to F, coincides with 7¢,. Applying
the Fourier inversion theorem, it is easy to see that f, = ¥,.

Let
v="U fi'd1h.

neN

As all the f, (ne N) are odd, we have

-v= £ '{-1D,
neN
and so Vn (—=V) = 0. Moreover

G\Vu (=)= £ =) my'(EH =my () ED) = (G,

neN neN neN
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showing that Vu(—V)=G \(G)(Z). With this information about V, we can now define
a function ¢ on G as follows:

1 if yeV,
(=1 0 if xe(G)y,
—1 if ye—V.

It is clear that, for each ne N, ¢ = f, on G \m; '(E}).

If ae G, then ae F, for some ne N. We shall verify that (3.1) holds if we take
V, — V, * 6,, for u,, and thereby shall show that ¢ € #(G). To this end, note that

3.6) A () =1, (0(1 = Qa, —p)

for each y € G. Now, if y € G \m; '(F}), then ¢ (y) = f,(y); this together with (3.6) yields
(3.1) for y € G \m; '(E}). On the other hand, if y € m; '(F), then 2a, —y) = (—a,2y) =1,
and hence

L0 = Qa, =) = (01— Q2a, —y) =0;

this, by (3.6), implies (3.1) for y € G \m; '(E"). The result follows. O

Proposition 3.7. Let G be a locally compact Abelian group such that G is a countable
torsion group. Then ®(G) is non-empty.

Proof. By virtue of Proposition 3.3, we may assume (without loss of generality)
that the topology of G is discrete. Since G/G,,, ~ G'?, it follows that G/G,,, is countable.
Let S be a complete set of representatives modulo G,,, and let H be the smallest subgroup
of G containing S. Clearly, S has the same cardinality as G/G,), so it is countable.
Accordingly, H is countable too. It is evident that H® = G®. Since G is a torsion group,
so too is H. Now, by Proposition 3.6, ®(H) is non-empty and, by Proposition 3.4, also
@ (G) is non-empty. O

Proposition 3.8. Let G be alocally compact Abelian group such that ®(G) is non-empty,
and let F be a finite Abelian group. Then ®((G x F)*) is non-empty.

Proof. Let @, € ®(G), let ¢, be the characteristic function of (F),,, defined on F,
and let @5 be an odd function on F mapping F\(F),, into {—1,1} and (F),, onto {0}.

Let u be the measure in M, (F), concentrated on F®, whose restriction to F® coincides
with the Haar measure of F®. Since (F),, = (F®)*, it follows that

3.7) 0=
Moreover, for each y € F and each fe F,

(3-8) ?2(B) = 0,(B) 2y, —B).

Obviously, since F is finite, there exists g € M, (F) such that
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(3.9) 0, =0.

For each y = (o, B) e G X F, let

P(0) =@ (@) @, (B) + @3(B).

If a = (x,y)e G x F, then 2a = (2x, 2y) and, by (3.8),

(3.10) (D)1= Qa. ~) = ¢, (1 — Q2x, — 0)) 9, (h)
+ (p3(ﬁ) - (2)C, - (Z) (P3(B)(2y, _ﬂ) .

For each x € G, let u, be the measure in M, (G) such that

() = @y () (1 = 2x, —a)) (xeC).

Comparing the lattgr ecluality with (3.7), (3.9) and (3.10), and identifying in a standard
way (G x F)~ with G x F, we see that the function y — ¢ (x)(1 — (2a, —y)) is the Fourier
transform of the measure v, given by

va=#x®u+60®0*52x®(g*52y)~

Now, if B¢ (F),, then ¢,(B) =0 and hence ¢(x) = ¢ (B). Similarly, if f € (F),,), then
¢,(f) =1and L g, (B) =0, and so @ (x) = ¢, (). These observations combined with the fact
that y e (G X F)(z) if and only if oce(G)(z) and f GEZ) show that ¢ is an odd function
mapping G x F\(G x F),, into {—1,1} and (G x F),, onto {0}. Consequently, ¢ is an
element of ®((Gx F)*). O

For each ne N, we denote by Z(n) the cyclic group of order n.

Proposition 3.9. Let G be an Abelian group such that G® is finite. Then
G ~ Z(2)™ x F, where m is a cardinal number and F is a finite Abelian group.

Proof. Clearly, G is of bounded order. Hence, by a theorem of Priifer-Baer [17], [1]
(see also [13], § A.25, and [10], Theorem 17.2), G is isomorphic with H"‘Z(pl ), where

only finitely many distinct primes p; and positive integers r; occur. Smce G? is finite,
among the factors Z(p!) there are only finitely many ones w1th p;=2and r,;> 1, and with
p; > 2. The proposition follows. O

Note that, for any Abelian group G, G, is isomorphic with Z(2)™, where m is a
cardinal number. This follows immediately from G,,, being in a natural way a vector space
over the field Z(2). One might for a moment think that perhaps Proposition 3.9 can be
established by showing that G,, is a direct product of G,, and a group isomorphic with
G'?. Taking Z(4) for G shows, however, that G,, may fail to be a direct factor of G.

Theorem 3.1. Let G be a locally compact Abelian group such that G'® is either a
countable torsion group or a group isomorphic with Z X F, where F is a finite Abelian group.
Then ®(G) is non-empty.
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Proof. In view of Proposition 3.3, we may assume that G is discrete. If G? is a
countable torsion group, then the theorem immediately follows upon applying Proposi-
tion 3.7. Suppose then that G* ~ Z x F, where F is a finite Abelian group. Let © be the
canonical homomorphism from G onto G/G,,,. Identifying G® with G/G ,, and F with a
suitable subgroup of G'?, we find that G/n~ !(F) ~ Z. By a theorem on direct factorisa-
tion (cf. [13], §25.30(a)), =~ '(F) is a direct factor of G, and so G~ Z x n~ (F).
Clearly, (n~'(F))® is isomorphic with F, and hence it is finite. By Proposition 3.9,
n~Y(F) ~ Z(2)™ x F’, where m is a cardinal number and F’ is a finite Abelian group. Now
the theorem follows upon applying Propositions 3.2, 3.5 and 3.8. O

As an immediate consequence of Proposition 3.1 and Theorem 3.1, we obtain the
sufficiency part of Theorem 2.1 which for clarity we state below as a separate proposition.

Proposition 3.10. Let G be a locally compact Abelian group G such that G'® is either
a countable torsion group or a group isomorphic with Z X F, where F is a finite Abelian group.
Then G is a c-group.

For a locally compact Abelian group G, we denote by 4, (G) the space of all Fourier
transforms of measures in M, (G).

Theorem 3.2. Let G be a locally compact Abelian group such that G® is finite. Then
& (G) N A,(G) is non-empty.

Proof. By Proposition 3.9, G is isomorphic with Z(2)™ x F, where m is a cardinal
number and F is a finite Abelian group. Let v be a measure in M, (F) such that ¥ is an
odd function mapping F\(F),,, into {—1,1} and (¥),,, onto {0}. Set =8, ® v. Then p
is an element of M,(G) and it is easy to verify that g belongs to @(G)nA4,(G). O

As before, we see that Proposition 3.1 and Theorem 3.2 imply the sufficiency part
of Theorem 2.2 which can be stated in the following form:

Proposition 3.11. Let G be a locally compact Abelian group such that G® is finite.
Then G is a be-group.
4. Decomposable groups
In this section, we single out a class of locally compact Abelian groups each member
of which is decomposable in a certain sense, and characterise compact groups in this class.

This characterisation will be of direct relevance in the subsequent section.

A locally compact Abelian group G will be called decomposable if there exists an
open subset U of G such that Uu(—U) = G\G,, and Un(—-U) = 0.

Proposition 4.1. Any decomposable connected compact Abelian group different from
a singleton is topologically isomorphic with T.

Proof. Let G be a decomposable connected compact Abelian group different from
a singleton. By the connectedness of G, G is torsion free (cf. [13], § 24.25). Let {y;};., be



Chojnacki, Representations of cosine functions 77

a maximal indexed collection of independent elements of G, and let m be the cardinality
of the index set 1. As is known, m does not depend on the particular choice of the maximal
family of independent elements of G and defines the so-called torsion-free rank of G. By
the maximality of {y;},.,, for each y e G, there exist integers n(y) and n;(y) (i) such
that n;(x) + 0 for only finitely many i€ 1, and n(x)x = Y. n;(x) z;- By the independency of
iel
the y; (ieI), n(x) can be taken to be non-zero so that — in particular — for each i e I the
rational number #7;(y)/n(x) makes sense; moreover, this number depends only on y. One
verifies at once that, for each ie [, the function g;: x +— n;(x)/n(x) is a homomorphism
from G into the group @ of rational numbers. We claim that, for each i, ¢,(G) is
isomorphic with Z.

In fact, fixing i € [ arbitrarily and, for a given homomorphism f, letting ker /" denote
the kernel of f, observe first that (g,;(G))" = (kerp,)*, where the annihilator is taken in G
identified with G. Being a subgroup of G, (kerg;)* is decomposable. Let U be an open
subset of (ker g;)* such that Uu (—U) = (ker g))* \((ker ¢))*) 5, and Un (—U) = 0. Since
0,(G) = @, ¢,(G) can be regarded as a subgroup of R. Let o, be the embedding of ¢,(G)
into R, and let &; be the dual homomorphism from R (= R) onto a dense subgroup of
(ker g,)* given by

(r, 4;(0)) = "5 (reg,(G), te R).

Let S be the closure of &((0, +)) in (kerg;)*. Clearly, S is a compact cancellative
semigroup. By an elementary result from the theory of topological semigroups (cf. [13],
§9.16, and [2], Theorem 1.10), S is a group. Hence S contains &(R), and, since &,(R) is
dense in (kerg;)*, S coincides with (ker g,)*. Now, proceeding by reductio ad absurdum,
suppose that g,(G) is not isomorphic with Z. Then g;(G) is a dense subgroup of R, and
so & is one-to-one. Consequently, &; '(((kerg,)*),)) = (&; *((kerg;)*)).») = {0} so that
4, '(U)and 4, }(— U) are disjoint, open and closed subsets of R \ {0} whose union coincides
with R\{0}. From this it follows that & '(U) coincides either with (0, + o) or with
(=00, 0). Substituting — U for U if necessary, we may assume that &, '(U) = (0, + c0).
Then &,((0, + o)) = U, and so, if we let U denote the closure of U in (ker g;)*, we see that
S < U, whence U = (ker g,)*. On the other hand, it is clear that — U = (kerg;)* \U. This
contradiction establishes the claim.

To complete the proof, it suffices to show that m = 1. Suppose the contrary. Let i,
and i, be two distinct elements of /. Let ¢: G — @2 be the homomorphism defined by
o = (g, W) Then, in view of the fact that y; and Xi, are independent and both Q,I(G)
and g;, (G) are isomorphic with Z, we see that o(G) is isomorphic with Z2. Since
(Q(G))‘ ~ (ker g)*, it follows that (ker ¢)* = T2. On the other hand, (ker ¢)* as a subgroup
of G is decomposable. But clearly T? is not decomposable, as T \(T?),, = T>\{(1,1),
(—1,1), (1, =1), (=1, —1)} is connected. This contradiction completes the proof. O

Proposition 4.2. Any decomposable compact Abelian group that is not totally discon-
nected is topologically isomorphic with T X Z(2)™ x F, where m is a cardinal number and F
is a finite Abelian group.

Proof. Let G be a decomposable compact Abelian group that is not totally discon-
nected. Let G, be the component of 0 in G. Since G is not totally disconnected, G, is not
a singleton. Being a closed subgroup of G, G, is compact and decomposable. By Proposition

6 Journal fiir Mathematik. Band 478
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4.1, G, is topologically isomorphic with T. Now it follows from a theorem on direct
factorisation (cf. [13], § 25.31(a)) that G = G, X (G/G,). The proof will be complete once
we show that G/G, = Z(2)™ x F for some cardinal number m and some finite Abelian
group F. We first show that (G/G,)? is finite.

Suppose, on the contrary, that (G/G,)® is infinite. Then, since

(G/Go)(z) > (G/Go)/((G/Go)(z)),

(G/Gy),y is a subgroup of G/G, of infinite index. Since G/G,, is compact and (G/G),,, is

closed in G/G,, it follows that (G/G,),,, is a subset of G/G, of null Haar measure. Con-

sequently, there is a net {x,},., in (G/G,) \(G/Gy) ) such that lim x, = 0. Let U be an
A

open subset of G such that Uu (—U) = G\G,, and Un (—U) = 0. Since, for each o€ 4,
G, + x, is connected and does not intersect G,), it follows that either G, + x, = U or
G, + x, < — U. Substituting —x, for x, if necessary, we may assume that G, + x, = U for
each a € 4. Since x, — 0 as « tends to infinity along 4, we see that G, is contained in the
intersection of the closures in G of U and — U, and as such it is a subset of G,,. But the
latter is incompatible with the fact that G, is isomorphic with T. This contradiction
establishes the finiteness of (G/G,)?.

If H is a compact group, then H® is a closed subgroup of H, and (H®)~~ H/(H?®)*.
But (H?)! = (H),,, and H/(H),,~ (A)?. Thus (H?)~ ~ (A)?. Now, if H? is finite,
then, since H® and (H®)~ have equal cardinalities, (H)® is also finite. Applying these
observations to H = G/G, and using Proposition 3.9, we see that (G/Gy)~ ~ Z(2)™ x F,
where m is a cardinal number and F is a finite Abelian group. By duality, it follows that
G/G, is topologically isomorphic with Z(2)"x F. O

Proposition 4.3. If G is a decomposable totally disconnected compact Abelian group,
then (G)® is countable.

Proof. Let G be a decomposable totally disconnected compact Abelian group. Pro-
ceeding by reductio ad absurdum, suppose that (G)® is uncountable. Let U be an open
subset of G such that Uu (—U) = G\G,, and Un (—U) = 0. Since G is totally discon-
nected, it has a basis B of neighbourhoods of 0 consisting of compact open subgroups of
G (cf.[13],§7.7). Choose a, € U. Thena, + V; = Ufor some ¥, € B. Note that V', \G,, * 0.
Indeed, otherwise V; would be contained in G,, so that G,, would be an open subgroup
of G, and, since G is compact, G,,, would have finite index in G. Now, since G/G,, ~ G?,
G® would be finite. But then, as we saw while establishing the foregoing proposition,
(G)® would also be finite, a contradiction. Let a, € V, \G,,. Passing if necessary to —a,,
we may assume that a, € ¥, n U. Now, since ¥; n U is open, there exists V, € B such that
V, < V,and a, + V, = ¥V, n U. Continuing the process, we obtain a sequence {V,},. in B
and a sequence {a,},.y in G such that, for each ne N,

(4.1) Var1<V,
and

4.2) iyt VosrcV,nU.
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Since 0 € V,, we have G,) = V, + G, for each ne N, and so

G(z)c ﬂ Va +G(2))-

neN

We claim that
( ﬂ V. + G(z))) \Gy) * 0.

neN

Indeed, otherwise {¥, + G,,},. can serve as a basis of neighbourhoods of 0 in G/G,,,,
and so G/G,, is metrisable. It is easy to see that G/G,,, is topologically isomorphic with
G@. In fact, since G is compact, G/G,, is also compact. The mapping m,: G — G is
continuous, and so, by a fundamental property of the quotient topology, the induced
isomorphism m3 : G/G,) — G is also continuous. Now, in view of the compactness of
G/G,,), m% is a homeomorphism. Having established the relation G/G,, = G, we now
infer that G‘? itself is metrisable. Since G® is also compact, (G'®)" is countable. But, as
we saw while proving the foregoing proposition, (G®)~ is isomorphic with (G)®. Thus
(6)? is countable. This contradiction establishes the claim.

Let % be a non-free ultrafilter on N, and let a, = lim g, (cf. [4], §11.8; we resort
n—->u

to the notion of a limit with respect to an ultrafilter in order to be able to handle simultane-
ously and in a smooth way several accumulation points of sequences; the use of ultrafilters
and respective limits is a mere technicality and can be avoided at the expence of a lengthening
of the argument). In view of (4.1) and the fact that, for each ne N, V, is closed and
a,. €V,, it follows that

4.3) a,e ) V,.

neN

We now show that, by modifying the sequence {a,}, ., if necessary, we may always assume
that a, ¢ G,,.

Suppose that initially @, € G,,. Let

be ( ﬂ V. + G(z))) \G(y)-

neN

Foreachne N, let v, € ¥, and g, € G,, be such that b = v, + g, and set a, = a, + v,. Since

Upsy+ Vo1 <V, iy, itfollows from (4.2) thata,, , + V,,, = ¥,n U, and so {a,}, . satisfies

(4.2). Let a, = lim a, and g, = lim g,. Clearly, a,, = a,, + b — g_. Since both a, and g,
n—>u n—>u

belong to G,,, we have 2a/, = 2b, and further, since b ¢ G,), we see that a ¢ G,). Thus

{a,},n 1s @ desired modification.

Assuming now — as we may — that a, ¢ G,), let U be that of the sets U and —U
which contains a,. Let We B be such that

(4.4) a,+wcl.
Choose W’'e B so that W'+ W’ < W. Since a,, is a cluster point of {a,},.n, there exist

ki, k, € N such that k, <k, and a,, —a_, e W’ (i=1,2). We see that both g, — q,, and
a,, — a,, belong to W, and, on account of (4.4), we have
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4.5) a,+a,—aq,elU

and

a, +a,—a, € U,
the latter relation implying that
(4.6) a, —a, —a,e—U.

On the other hand, by (4.1) and (4.2), g, V,_, = V}, and, by (4.3), a,, € V. Since V|
is a group, it follows thata,, — a,,€ V,, and —a — a,,€ V, . Now, in view of (4.2), we have

a, + a,—aq,eU
and

ak] - aOO

—a,eU.

But these last relations are incompatible with (4.5) and (4.6). This contradiction establishes
the proposition. 0O

Now we are in a position to state the main conclusion of this section.

Theorem 4.1. Let G be a compact Abelian group. Then G is decomposable if and only
if either (G)® is a countable torsion group or G is topologically isomorphic with T X Z (2)™ x F,
where m is a cardinal number and F is a finite Abelian group.

Proof. Necessity follows from Propositions 4.2 and 4.3.

To prove sufficiency, suppose that G is such that either (G)® is a countable torsion
group or G is topologically isomorphic with T X Z(2)™ X F, where m is a cardinal number
and Fis a finite Abelian group. Note that in the latter case (G)® ~ Z x (F)®. By Theorem
3.1, in either case the set @(G) is non-empty. Let ¢ € #(G) and U= ¢~ '({1}). Then,
clearly, U is an open subset of G such that Uu (—U) = G\G,, and Un(—U) = 0. The
result follows. O

5. Characterising c-groups and bc-groups: necessary conditions

The aim of this section is to prove the necessity parts of Theorem 2.1 and 2.2. We
shall formulate these parts as separate propositions.

Proposition 5.1. If a locally compact Abelian group G is a c-group, then G is either
a countable torsion group or a group isomorphic with Z X F, where F is a finite Abelian group.

Proof. Let Goa+— v,e M,,(G) be a cchomomorphism of G. Identifying M, (G)
with M,,(G,) and taking account of (2.1), we see that, for every e (G,)~ = b(G), the
function a +— 7,(x) is a homomorphism from G, into the multiplicative group C \{0}. Since,
by (2.2), for each ae G,
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(5.1) (0 + (5.00) " = (@, 1) + (@, =)

and the right-hand side of this equality has modulus no greater than 2, it follows that the
homomorphism a — ¥,(y) takes on values in a bounded subgroup of C \{0}, and hence
is a character of G;. Moreover, (5.1) and the uniqueness of Fourier expansion ensure that,
for each y € b(G), the character a — ¥, takes the form

9,0 =(a,e(1) (@eG)

for some function ¢ on »(G) with values in {—1,1}. Observe that, in view of the last
equality and evenness of the v, (a € G), the restriction of ¢ to b(G) \(b(G)),,, is odd. Let
¢ (x) be the function on b(G) defined by

(5.2) o) = {8(;0 if ¥ €b(G)\(B(G))a),

0 if x €(b(G))a).
For each a€ G, let u, = 2v, % 6, — 6,, — d,. Direct computation shows that

(5.3) ) =01 —Qa,—y) (aeG, yeb(G)).

If y € 5(G) \(5(G)),), then there exist a e G and an open neighbourhood V of y such that
(2a, —y) £ 1 for all ye V. From this and (5.3) it follows that the restriction of ¢ to
b(G) \(b(G)),,, is continuous. Let U = ¢~ *({1}). Since b(G) \(b(G)),,, is an open subset
of b(G) and the restriction of ¢ to A(G) \(h(G)),,, is odd and continuous, it follows that
U is an open subset of 5(G) such that Uu (—U) = b(G) \(b(G)),) and Un (—U) = 0.
By Theorem 4.1 and the fact that (5(G))" = G,, either (G,)® is a countable torsion group
or b(G) is topologically isomorphic with T x Z (2)™ x F, where m is a cardinal number
and F is a finite Abelian group, in the latter case G, being isomorphic with Z x Z (2)™ x F.
Hence G is either a countable torsion group or a group isomorphic with Z x (F)®. 0o

Formulated in a different manner, our next result has already appeared in [3]. The
proof given below is much simpler than the corresponding proof in [3] (namely, that
accompanying Théoréme 3.2).

Proposition 5.2.  If a locally compact Abelian group G is a be-group, then G2 is finite.

Proof. Let G be a locally compact Abelian group admitting a bounded c-homo-
morphism G3a +— v,e M, (G). Let AP(G) be the space of all complex almost periodic
functions on G, and let /*(G) be the space of all complex bounded functions on G. Let m
be a Banach mean on /®(G), that is, a bounded linear functional on [®(G) satisfying the
following conditions:

@ limll=1=m(1),

(ii) m(T,f) = m(f) for each fe!*(G) and each a e G.
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The existence of such an invariant mean is ensured by a theorem of Day [5] (see also
[13],§17.5, and [12], Theorem 1.2.1). For each a € G, set u, = 2v, * 5, — J,, — J,. Since,

of course, sup || u,|| < + oo, the mapping
aeG

AP(G) > f > m, (] fdp,)eC

is a well-defined functional on AP (G); here the subscript a in m, indicates that the action
of m refers to the dummy variable a. Since the space AP(G) can canonically be identified
with the space of all complex continuous functions on G, the above functional can be
identified with a uniquely determined measure u in M (bG) such that

(5.4) a0 = m,(2,(0)

for each y € (bG)~ = (G),. Repeating the argument from the proof to the preceding pro-
position, we see that there exists an odd function ¢ on G such that ¢ (G \(G)(Z)) c{—1,1},

¢((G)(2)) = {0}, and
a0 =000 —Qa, —y) (acG, xeG).

Comparing the last equality with (5.4), we see that

aG) = @ (m,(1-(Qa, =)
for each y e G. Taking into account that

1 if ye (G)(z),

m,((2a, —y)) = {0 if 1€ G\(G)e),

we find that fi(y) = ¢ (x) for each y € G. Accordingly, the measure u is odd and

(5.5) (u* )" = (1) =166

If we identify the Haar measure 4,2 with a suitable measure in M (bG) concentrated on
(bG)®, then clearly Z,ga = 1(6,,- This identity together with (5.5) shows that

(5.6) U* = 0o — Apgy -

Now, proceeding by reductio ad absurdum, suppose that the group G is infinite. Then
the compact group (bG)@ is also infinite and, correspondingly, the Haar measure 4,2
is continuous. Passing to atomic parts in both sides of (5.6), we see that 7, () * 7, (1) = .
Thus |(n,(1))"(0)| = 1. On the other hand, since u is odd, so too is m,(x), and hence
(m, (W)~ (0) = 0. This contradiction completes the proof. O

6. Concluding remarks
The aim of this final section is to present some results contributing to the theory of

single operators in Banach spaces. These results will be consequences of the fact that Z is
a c-group but not a be-group.
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For ne N, let T, (X) denote the Chebychev polynomial of degree n defined as

[n/2]

T;l(X) _ Z <2nk> X"_Zk(XZ-—I)k,

k=0

where [a] designates the integral part of the real number a. Set T,(X)=1 and
T,(X) = T_,(X) for each negative integer n. It is straightforward to verify that if 4 is an
algebra with identity, then for each a € 4 the function Zsn + T,(a) € 4 is an A-valued
cosine function on Z, and conversely any cosine function € : Z — A assumes the form

¢n) =T (a) (nez)
forsomea € A (it suffices to take € (1) for a). By Theorems 2.1 and 2.3, we have the following:

Theorem 6.1. Let A be a sequentially complete semitopological algebra with identity.
If ae A is such that {T,(a)},. is bounded, then there exists an invertible element b of A
such that

1
6.1) T, (a) = 3 o"+b6""
for each ne N.

Inspection of the proofs of Theorems 2.1 and 2.3 (with special attention paid to (3.2)
and (3.3)) reveals that (6.1) holds with b equal to

2i 4i 2 1
;6*‘[1—“‘ Z W:_ITZk(a)’

T k=1
where e denotes, of course, the identity of A.

It follows from Theorems 2.2 and 2.4 that there exist Banach spaces E, composed
of even sequences indexed by Z, and there exist elements a of £ (E) satisfying || 7, (a)|| = 1
for each ne N such that if an invertible element b of Z(E) satisfies (6.1), then
sup ||b"|| = + 0. As, by virtue of Theorem 6.1, for any such a there is an invertible

neZ

element b of £ (E) satisfying (6.1), we see that the following holds true:

Theorem 6.2. There exist Banach spaces E and invertible elements b of the corre-
sponding algebras ¥ (E) satisfying ||b"+ b~ "|| = 2 for each n € N and having the following
property: If ¢ is an invertible element of £ (E) such that

(6.2) B bt =ct "

for each ne N, then sup||c"|| = + co.

neZ

It should be stressed that none of the spaces E in the above theorem are isomorphic
to a Hilbert space. Indeed, as mentioned in the Introduction, if H is a Hilbert space and
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be ¥ (H) is invertible and satisfies sup||6" + b~ "|| < + o0, then there exists an invertible

neN
element ¢ of £ (H) with sup||c”|| < + oo for which (6.2) holds. By a theorem of Wermer

neZ

[19] (see also [6], Lemma XV.6.1), such ¢ must then necessarily be similar to a unitary
operator.
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