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Abstract

In recent work the authors proposed a wide-ranging method for estimating
parameters that constrain image feature locations and satisfy a constraint not
involving image data. The present work illustrates the use of the method with
experiments concerning estimation of the fundamental matrix. Results are
given for both synthetic and real images. It is demonstrated that the method
gives results commensurate with, or superior to, previous approaches, with
the advantage of being fast.

1 Introduction

An important problem in computer vision is estimation of the parameters that describe a
relationship between image feature locations. In some cases, the parameters are subject
to an ancillary constraintnot involving feature locations. Basic examples include the
stereo and motion problems of estimating coefficients of theepipolar equation[5] and
thedifferential epipolar equation[1], each involving a separate ancillarycubic constraint.
The principal equationapplicable in a variety of situations, including those specified
above, takes the form

θT u(x) = 0. (1)

Hereθ = [θ1, . . . , θl]T is a vector representing unknown parameters;x = [x1, . . . , xk]T

is a vector representing an element of the data (for example, the locations of a pair of
corresponding points); andu(x) = [u1(x), . . . , ul(x)]T is a vector with the data trans-
formed in a problem-dependent manner such that: (i) each componentui(x) is a quadratic
form in the compound vector[xT , 1]T , (ii) one component is equal to1. A common form
of the ancillary constraint is

φ(θ) = 0, (2)

whereφ is a scalar-valued functionhomogeneousof degreeκ, i.e. such that

φ(tθ) = tκφ(θ) (3)

for every non-zero scalart. The estimation problem associated with (1) and (2) can be
stated as follows: Given a collection{x1, . . . ,xn} of image dataand a meaningfulcost



functionthat characterises the extent to which any particularθ fails to satisfy (1) withx
replaced byxi (i = 1, . . . , n), findθ 6= 0 satisfying (2) for which the cost function attains
its minimum. An application of theGaussian model of errorsin data in conjunction with
theprinciple of maximum likelihoodleads to the cost function

JAML(θ;x1, . . . ,xn) =
∑
i=1

θT u(xi)u(xi)T θ

θT ∂xu(xi)Λxi
∂xu(xi)

T
θ

,

where, for any lengthk vectory, ∂xu(y) denotes thel×k matrix of the partial derivatives
of the functionx 7→ u(x) evaluated aty, and, for eachi = 1, . . . , n, Λxi

is a k ×
k symmetriccovariance matrixdescribing the uncertainty of the data pointxi (see [3,
9]). If JAML is minimised over those non-zero parameter vectors for which (2) holds,
then the vector at which the minimum ofJAML is attained, theconstrainedminimiser of
JAML, defines theapproximated maximum likelihood estimateθ̂AML. Theunconstrained
minimiser ofJAML obtained by ignoring the ancillary constraint and searching over all of
the parameter space defines theweak approximated maximum likelihood estimate, θ̂w

AML.
The functionθ 7→ JAML(θ;x1, . . . ,xn) is homogeneous of degree zero, so bothθ̂AML

andθ̂w
AML are determined only up to scale.

Earlier work of the authors [3] presented a method for findingθ̂w
AML. Recently, the

authors proposed a method for calculatingθ̂AML [4]. The present paper compares these
and other methods in the case of fundamental matrix estimation. In light of the results
of experiments conducted, the method of constrained minimisation is found to perform
better than other methods in terms of accuracy and speed.

2 Fundamental numerical scheme

The unconstrained minimiser̂θw
AML satisfies thevariational equationfor unconstrained

minimisation
[∂θJAML(θ;x1, . . . ,xn)]θ=θ̂w

AML
= 0T (4)

with ∂θJAML the row vector of the partial derivatives ofJAML with respect toθ. Direct
computation shows that

[∂θJAML(θ;x1, . . . ,xn)]T = 2Xθθ, (5)

where

Xθ =
n∑

i=1

Ai

θT Biθ
−

n∑
i=1

θT Aiθ

(θT Biθ)2
Bi,

Ai = u(xi)u(xi)T , Bi = ∂xu(xi)Λxi
∂xu(xi)

T
.

Thus (4) can be written as
[Xθθ]θ=θ̂w

AML
= 0. (6)

An algorithm for numerically solving this equation proposed in [3] exploits the fact that
a vectorθ satisfies (6) if and only if it falls into the null space of the matrixXθ. Thus
if θk−1 is a tentative approximate solution, then an improved solution can be obtained



by picking a vectorθk from that eigenspace ofXθk−1 which most closely approximates
the null space ofXθ; this eigenspace is, of course, the one corresponding to the eigen-
value closest to zero in absolute value. Thefundamental numerical scheme(FNS) im-
plementing this idea is presented in Figure 1. The scheme is seeded with thealgebraic
least squares(ALS) estimate, θ̂ALS, defined as the unconstrained minimiser of the cost
function JALS(θ;x1, . . . ,xn) = ‖θ‖−2

∑n
i=1 θT Aiθ. The estimatêθALS coincides,

up to scale, with an eigenvector of
∑n

i=1 Ai associated with the smallest eigenvalue,
and this can be found by performing singular-value decomposition (SVD) of the matrix
[u(x1), . . . ,u(xn)].

1. Setθ0 = θ̂ALS.

2. Assumingθk−1 is known, compute the matrixXθk−1 .

3. Compute a normalised eigenvector ofXθk−1 corresponding to the
eigenvalue closest to zero (in absolute value) and take this eigenvec-
tor for θk.

4. If θk is sufficiently close toθk−1, then terminate the procedure;
otherwise incrementk and return to Step 2.

Figure 1: Fundamental numerical scheme.

Different but related schemes for numerically solving equations like (6) were de-
veloped by Leedan and Meer [10] and Matei and Meer [11]. Yet another approach is
Kanatani’s [9, Chap. 9]renormalisationscheme, in which an estimate is sought at which
∂θJAML is approximately zero (see [2] for details).

3 Constrained fundamental numerical scheme

By design, FNS does not accommodate the ancillary constraint. One way of enforcing this
constraint is to apply some post-hoc correction procedure (see [9, Chap. 5]). In general,
however, the modified estimates produced in this way will not coincide with constrained
minimisers of the cost function.

An algorithm for determining exact constrained minimisers was proposed in [4]. It is
a variant of FNS, in whichXθ is replaced by a more complicated matrix. The scheme is
derived starting from the variational equation for constrained minimisation

[∂θJAML(θ) + λ∂θφ(θ)]θ=θ̂AML
= 0T ,

φ(θ̂AML) = 0,
(7)

whereλ is a suitable Lagrange multiplier. When properly combined with the identity
∂θφ(θ)θ = κφ(θ) obtained by differentiating (3) with respect tot and evaluating at
t = 1, the system (7) can be rewritten as

Zθθ
∣∣
θ=θ̂AML

= 0, (8)



whereZθ is anl × l matrix defined as follows. LetP θ be thel × l matrix given by

P θ = I l − ‖aθ‖−2aθaT
θ ,

whereI l denotes thel × l identity matrix andaθ = [∂θφ(θ)]T /2. Denote byHθ the
Hessian ofJAML atθ, given explicitly by

Hθ = 2(Xθ − T θ),

where

T θ =
n∑

i=1

2
(θT Biθ)2

(
AiθθT Bi + BiθθT Ai − 2

θT Aiθ

θT Biθ
BiθθT Bi

)
.

Let Φθ be the Hessian ofφ at θ. For eachi ∈ {1, . . . , l}, let ei be the lengthl vector
whoseith entry is unital and all other entries are zero. Now, let

Zθ = Aθ + Bθ + Cθ,

where

Aθ = P θHθ(2θθT − ‖θ‖2I l),

Bθ = ‖θ‖2‖aθ‖−2
[ l∑

i=1

(Φθeia
T
θ + aθeT

i Φθ)XθθeT
i − 2‖aθ‖−2aθaT

θ XθθaT
θ Φθ

]
,

Cθ = ‖aθ‖−2κ
[φ(θ)

4
Φθ + aθaT

θ − φ(θ)
2

‖aθ‖−2aθaT
θ Φθ

]
.

Unlike Xθ, the matrixZθ is not symmetric. To achieve greater resemblance to (6), it
proves useful to consider the following equivalent form of (8)

[ZT
θ Zθθ]θ=θ̂AML

= 0 (9)

with ZT
θ Zθ a symmetric matrix. Now, an algorithm fully analogous to FNS can be ad-

vanced by replacingXθk−1 by ZT
θk−1

Zθk−1 in Figure 1. We call this theconstrained
fundamental numerical scheme(CFNS). A necessary condition for CFNS to converge is
that, for eachk = 0, 1, . . . , the smallest (non-negative) eigenvalue ofZT

θk
Zθk

should be
sufficiently well separated from the remaining eigenvalues. When this condition is satis-
fied, the algorithm seeded with an estimate close enough to the sought-after constrained
minimiser will produce updates quickly converging to that minimiser. Interestingly, many
other, often simpler, equivalent forms of (8) like

[Y θθ]θ=θ̂AML
= 0 with Y θ = ‖θ‖2P θXθP θ + I l − P θ

lead to non-converging algorithms, with divergence occurring irrespective of the distance
of the initial estimate from the desired limit.

4 Experimental evaluation

In this section, we present results of comparative tests carried out to evaluate the per-
formance of CFNS. Several algorithms, including CFNS, were used to compute the fun-
damental matrix from synthetic and real image data. Single data were formed by pairs



of corresponding points, the role of the principal constraint was played by the epipolar
constraint, and the ancillary constraint was the condition that the determinant of the fun-
damental matrix should vanish. The covariances of the data were assumed to be default
identity matrices corresponding to isotropic homogeneous noise in image point measure-
ment.

The basic estimation methods considered were:

• NALS = Normalised Algebraic Least Squares Method
• FNS = Fundamental Numerical Scheme
• CFNS = Constrained FNS
• GS = Gold Standard Method.

Here, NALS refers to thenormalisedALS method of Hartley [7], which takes suitably
transformed data as input to ALS and back-transforms the resulting estimate; GS refers
to the (theoretically optimal) bundle-adjustment, maximum-likelihood method described
by Hartley and Zisserman [8], seeded with the FNS estimate; FNS and CFNS are as de-
scribed earlier. CFNS was applied in the Hartley-normalised data domain. The data nor-
malisation combined with back-transforming of estimates has no theoretical influence on
the constrained minimiser, but in practice significantly improves separation of the smaller
eigenvalues of the matricesZT

θ Zθ involved. The CFNS algorithm fails to converge when
used with raw data, a phenomenon explained by the lack of sufficient eigenvalue separa-
tion.

When comparing the outputs of algorithms along various dimensions, it is critical that
the ancillary constraint be perfectly satisfied. A convenient way to enforce this constraint
is to correct an estimate of the fundamental matrix in a post-process. Any estimateF̂
with ‖F̂ ‖ = 1 can be modified to a rank-2 matrix̂F c with ‖F̂ c‖ = 1 by minimising
the distance‖F̂ − F̂ c‖F subject to the conditiondet F̂ c = 0, where‖ · ‖F denotes the
Frobenius norm. The minimiser can easily be found by performing a SVD ofF̂ , setting
the smallest singular value to zero and recomposing. For the estimate generated by FNS,
a more sophisticated, Kanatani-like (cf. [9, Chap. 5]) correction can be obtained by means
of the iterative process

θk+1 = θk − [∂θφ(θk)H−
θk

[∂θφ(θk)]T ]−1φ(θk)H−
θk

[∂θφ(θk)]T , (10)

whereH−
θk

denotes the pseudo-inverse ofHθk
.

Our computed estimates were usually post-hoc rank-2 corrected. In case of the NALS
method, SVD correction preceded the final back-transformation of estimates. In the fol-
lowing, we use the notation “+” to denote a post-process SVD correction, and “++” to
denote an iterative correction (see (10)) followed by SVD correction. Thus, the compo-
sition of FNS and SVD correction is denoted by FNS+. Of the various methods listed
here, only SVD correction is guaranteed to generate a perfectly rank-2 estimate, although
CFNS, GS and the iterative correction usually get extremely close.

4.1 Synthetic image tests

Synthetic tests are valuable in comparative testing as we have ground truth available, and
we may employ repeated trials yielding results of statistical significance.

The regime adopted was to generate true corresponding points for some stereo con-
figuration and collect performance statistics over many trials in which random Gaussian



JAML |φ|
FNS 50.18 1.56× 10−13

FNS+ 57.48 0
CFNS 52.62 3.07× 10−25

CFNS+ 52.62 0

Table 1:JAML and|φ| values for FNS and CFNS before and after SVD rank-2 correction.

JAML Reproj. error Time

NALS+ 57.50 1.278 0.02
FNS+ 57.47 1.278 0.29
FNS++ 53.42 1.265 0.61
CFNS+ 52.62 1.263 0.23
GS+ 52.62 1.263 3.50

Table 2:JAML residuals, reprojection errors and execution times for rank-2 estimates.

perturbations were made to the image points. Many configurations were investigated and
the results below are typical. Specifically, we conducted experiments by first choosing
a realistic geometric configuration for the cameras. Next,30 3D points were randomly
selected in the field of view of both cameras, and were then projected onto500 × 500
pixel images to provide “true” matches. For each of200 iterations, homogeneous Gaus-
sian noise with standard deviation of1.5 pixels was added to each image point and the
contaminated pairs were used as input to the various algorithms.

Table 1 examines the FNS and CFNS methods in terms of the cost function,JAML,
and the ancillary constraint residual,|φ|. As is to be expected, and consistent with its de-
sign, FNS generates the smallest value ofJAML, but leaves a non-zero ancillary constraint
value,|φ|. CFNS reduces the value of|φ| almost to zero and (necessarily) incurs a small
increase inJAML. Note that a subsequent SVD-correction (which ensuresφ = 0) of the
FNS estimate results in an associatedJAML value that is substantially increased. In con-
trast, SVD-correction of the CFNS estimate leaves theJAML value virtually unaffected,
and much smaller than the corrected FNS estimate. This test, which is typical, confirms
that CFNS is operating as designed.

Table 2 compares theJAML values generated by the methods NALS+, FNS+, FNS++,
CFNS+, and GS+. Note that all of the methods undergo a final SVD-rank-2-correction
ensuring that the ancillary constraint is perfectly satisfied. Were we to avoid this step (in,
say, the CFNS and GS approaches) it might be unclear whether a lowJAML value was
due to the constraint not having been fully satisfied.

The results show that, with respect toJAML, GS+ and CFNS+ perform best and
equally well, with FNS++ only a little behind; FNS+ and NALS+ are set further back.
The same ordering occurs when using a measure in which the estimated fundamental ma-
trix is employed to reproject the data and compute the distance of the data from the truth.
This reprojection-error from truth may be regarded as an optimal measure in the synthetic



Figure 2: The building and soccer ball stereo image pairs.

realm.
Finally, a timing test is also presented in Table 2. Here we give the average time over

100 trials to compute NALS, FNS, CFNS, and GS. Unsurprisingly, GS turns out to be
by far the slowest of the methods. While it may be speeded up via the incorporation of
sparse-matrix techniques, it is destined to be relatively slow given the high-dimensionality
of the search.

CFNS thus emerges as an excellent means of estimating the fundamental matrix. Its
performance is commensurate with GS while being much faster. FNS++ is only a little
short of CFNS in speed and accuracy. However, it does not have the advantage of being
an integratedmethod of constrained minimisation.

4.2 Real image tests

The image pairs from which we estimate fundamental matrices are presented in Figures 2.
They exhibit variation in subject matter, and in the camera set-up used for acquisition.
Features were detected in each image using the Harris corner detector [6]. A set of cor-
responding points was generated for each image pair by manually matching the detected
features. The number of matched points was44 for the building, and55 for the soccer
ball. For each estimation method, the entire set of matched points was used to compute a
fundamental matrix.

Each estimator was used to generate a fundamental matrix. Tables 3 and 4 show results
obtained for various methods when dealing with the soccer-ball and building images,
respectively. Measures used for comparison areJAML and the reprojection error to data
(the distance between the reprojected data and the original data). Note that the ancillary
constraint is in all cases perfectly satisfied. CFNS+ and GS+ give the best results and
are essentially inseparable, while FNS++ is only slightly behind. FNS+ and NALS+ lag
much further behind.

5 Conclusion

We presented a short experimental study to evaluate the performance of a newly designed
constrained estimator, CFNS. Our study indicates that CFNS produces estimates satisfy-
ing the imposed constraint, with values of the underlying cost function no greater than
those generated by other methods. CFNS generates results of similar accuracy to those
generated by the Gold Standard Method, but in a fraction of the time. Furthermore, CFNS



JAML Reproj. error (to data)

NALS+ 0.799 0.0926
FNS+ 0.813 0.0933
FNS++ 0.422 0.0681
CFNS+ 0.442 0.0681
GS+ 0.442 0.0681

Table 3:JAML residuals and reprojection errors for rank-2 estimates - soccer ball images.

JAML Reproj. error (to data)

NALS+ 5.35 0.285
FNS+ 4.88 0.275
FNS++ 2.05 0.173
CFNS+ 1.88 0.163
GS+ 1.88 0.163

Table 4:JAML residuals and reprojection errors for rank-2 estimates - building images.

has the advantages over FNS++ of being a genuinely integrated scheme for constrained
minimisation, and producing slightly more accurate results.
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