
ARM Instruction Set Simulation on Multi-Core x86
Hardware

Prepared by: Lee Wang Hao
a1148903

Supervisor: Dr. Bradley Alexander

A thesis submitted for partial fulfillment
to the requirements for an Honours Degree in Computer Science

The University of Adelaide
School of Computer Science

June 19, 2009

Abstract

Dynamic translation is a popular technique to build Instruction Set Simulators (ISS).
The dynamic translation process must be fast or the translation overhead will outweigh the
benefits of reusing code previously translated. In real hardware, decoding and execution
are performed by separate units in parallel. With the arrival of multi-core x86 desktops,
it is now possible to do translation and execution of the target processor’s instructions in
parallel so that Dynamic Binary translation can be much faster. This thesis reports on a
Multi-processing approach used for an ARM ISS called SimIt-ARM v3.0 [10]. The simula-
tor is used in exploring different techniques to improve the performance of parallel dynamic
translation. Experiments show that Multi-processing provides significant improvement in
simulation performance. Further speedup can be realised with more extensive optimisation
of code and pre-translation of target instructions by slave processors.

Contents

0.1 Acknowledgments . 3

1 Introduction 4
1.1 Thesis Organisation . 5
1.2 Notations and terminology . 5

2 Literature Review 7
2.1 Types of Simulation . 7

2.1.1 Cycle Accurate Simulation (CAS) 7
2.1.2 Functional Instruction Set Simulation (ISS) 8

2.2 Techniques for Designing Simulators . 8
2.2.1 Interpretive Simulation . 8
2.2.2 Binary Translation . 10
2.2.3 Static Binary Translation . 10
2.2.4 Dynamic Binary Translation . 11

2.3 Compiled Simulation . 12
2.4 Generating a Simulator . 13

3 SimIt-ARM-3.0 - A Multiprocessing ARM ISS 14
3.1 Interpretive and Dynamic-compiled simulation 14
3.2 System and User Level Simulation . 15
3.3 Translation Caching . 15

3.3.1 Persistent Caching . 17
3.3.2 Block Linking . 17

3.4 Floating Point Simulation . 18
3.5 Self-Modifying Code . 18
3.6 Multiprocessing . 19
3.7 Devices . 19
3.8 Debugger . 19
3.9 Simulation synthesizer with MADL . 19

4 Methodology 21
4.1 Overview . 21
4.2 Investigating Parallel Programming Models 21

1

4.2.1 POSIX Threads (Pthreads) . 22
4.2.2 OpenMP . 22

4.3 Improving Quality of Translated Code . 22
4.3.1 Stitching Translated Blocks . 23
4.3.2 Using Higher Optimisation Levels 24
4.3.3 Idle-Time re-optimisation . 25

4.4 Improving Locality of Translations . 27
4.4.1 RAM Disks . 27
4.4.2 Producing Code Images . 27

4.5 Reducing Time Spent in Interpretation . 27
4.5.1 Speculative Translation . 27
4.5.2 Varying Translation Threshold . 28

4.6 Test Setup . 29
4.7 Metrics . 30

5 Results and Discussion 31
5.1 Original Simulator Results . 31
5.2 Results on different threading models . 32
5.3 Results with optimising code quality . 35

5.3.1 Results on translating at higher Optimisations 35
5.3.2 Results on Idle-Time optimisation 37
5.3.3 Results on Block-Stitching . 39

5.4 Results of Locality . 40
5.4.1 Producing Object Code images . 40
5.4.2 Results of using a RAM-Disk . 42

5.5 Results on doing less interpretation . 43
5.5.1 Reducing Translation Threshold . 43
5.5.2 Results of speculative translation 44

5.6 Other Experiments . 47
5.6.1 Persistent Caching . 47
5.6.2 Persistent Caching benefits . 48
5.6.3 System Level Emulation . 49

6 Conclusion and Future Work 50
6.1 Investigate more optimisation engines and Passes 50
6.2 Proactive Compilation strategies . 51

6.2.1 Incorporating the Block Graph analysis 51
6.3 Using Linked Basic blocks . 52
6.4 Summary of Findings . 52

Appendices 65

2

List of Figures

2.1 The typical interpretive simulation template algorithm 9
2.2 FacSim’s [9] seperates Functional simulation and Cycle Accurate tracing for

parallelism . 9
2.3 Binary translation and optimisation process 10

3.1 Overall Simulator Organisation . 15
3.2 Instruction-set translation, compilation and optimisation process in SimIt-

ARM [10] . 16
3.3 Switching from interpretive mode and back 18

4.1 Disjoint translated blocks . 23
4.2 Idle time Re-Optimisation . 26

5.1 Speedup in original configuration . 31
5.2 Open MP with 2 processors . 32
5.3 OpenMP version of translation job queue, note the absence of the wait

construct . 34
5.4 Ratio of time in translation to code execution for the (test) h264 benchmark 36
5.5 Translating with 2 processors at various optimisation levels 37
5.6 Effects of Optimisation on short runs after lowering translation threshold to

1m . 38
5.7 Expected gain from Idle-time Re-optimisation 38
5.8 Simple function that returns an integer . 41
5.9 Simple function image that returns an integer 41
5.10 Use of a RAM-Disk . 42
5.11 Potential benefits of speculative translation 45

1 Partial code body of thread doing idle-time reoptimisation 55
2 Pthread version of slave thread body . 56
3 OpenMP version of slave thread body . 57
4 Pthreads parallel Pi program . 58
5 OpenMP parallel Pi program . 59
6 Code that calls the function image . 60
7 Varying translation thresholds on the 473.astar benchmark 60

3

8 Varying translation thresholds on the 401.bzip benchmark 61
9 Varying translation thresholds on the 445.gobmk benchmark 61
10 Varying translation thresholds on the 464.h264 benchmark 62
11 Varying translation thresholds with -O3 on the 473.astar benchmark 62
12 Varying translation thresholds with -O3 on the 401.bzip benchmark 63
13 Varying translation thresholds with -O3 on the 445.gobmk benchmark . . . 63
14 Varying translation thresholds with -O3 on the 464.h264 benchmark 64

4

0.1 Acknowledgments

I would like to thank my wonderful supervisor, Dr. Bradley Alexander for his great amount

of help and support rendered in the course of this project even when we’re both overseas. I

would also like to thank David Knight for his expertise on the Instruction-Sets and buffer-

cache, you’ve answered one of my burning questions. Thanks! Special thanks also go

to Francis Vaughan, Geoff Randall, Rod Whitby and Travis Olds from ASTC (Australian

Semiconductor Technology Company) for all the grisly low-level technical help. Thank you

Andrew Jeffrey for sharing your QEMU translation speeds in your project as I cannot do

things in parallel :). I would also like to thank Debby Coleman-George from the Writing

Centre for the help in proof reading this project’s proposal and your informative seminars

on thesis and academic writing. Thanks also go to Donna Velliaris from CLPD (Centre for

Learning and Professional Development) for the informative and useful seminars to perfect

my writing skills.

5

Chapter 1

Introduction

Designing complex electronic devices such as a new mobile phone or an MP3 player has be-

come a very challenging task. Competition from rival manufacturers make time-to-market

a critical determinant of the new products success in competing for a substantial market

share.

To speed up the design process of the new device, hardware and software development

has to proceed simultaneously. Ideally, the first prototype of the hardware is completed

together with the software so testing can start at the earliest possible stage. This means

that fast and accurate simulation of the hardware has to be available to the device software

developers as they are developing the product without actual hardware.

Portable electronic devices these days are often based upon specialised embedded RISC

processors. The main problem faced in creating RISC Simulators is that the simulators

execution speed is typically much slower than the actual hardware. Simulation environ-

ments typically have to run on a software engineer’s workstation, and integrate with the

tools used for compilation and debugging. The most common environment for the software

team are desktop computers that use an x86 processor. Thus, simulation is limited by the

speed at which an x86 processor can emulate a RISC.

In order to improve the execution speed of Instruction Set Simulators, aggressive tech-

niques are used. One such technique is Static Binary Translation where blocks of in-

structions are translated (in some cases compiled to native code) before execution so no

additional effort is required when the target ARM code is needed again. On standard von

6

Neumann Architectures however, data and code reside in the same memory space, making

this process difficult due to the problems [1] such as dynamic linking and self-modifying

code. Hence there is now a requirement for performing Dynamic Binary Translation which

translates along with program execution. This however, introduces a new problem; Dy-

namic translation must be fast otherwise the translation overhead will be higher than

simply interpreting the translated code prior to caching.

With the arrival of multi-core x86 desktops, it is now possible to do translation and

execution of the target processor’s instructions in parallel so that Dynamic Binary trans-

lation can be potentially faster.

This thesis presents work on exploring the use of readily available parallelism to improve

a Multi-processing ARM Instruction Set Simulator, SimIt-ARM. SimIt-ARM utilises a

technique called Dynamic Compiled Simulation, which first starts off with interpretive

simulation and translates frequently interpreted/executed instruction blocks into C++

dynamically linking libraries (DLLs). Due to the surfeit of processor cores available now,

new ways of managing the activities performed by each core during simulation can be

explored.

1.1 Thesis Organisation

This thesis is organised as follows, first is a historical overview of the styles and techniques

in Instruction Set Simulation in chapter 2. Next, the Multi-processing Simulator, SimIt-

ARM is described in some detail in chapter 3. Then the experimental work performed on

SimIt-ARM is outlined in chapter 4. The report then documents the experiment results in

chapter 5 along with the discussion about the experimental outcomes and the problems that

were encountered. Finally the last chapter concludes the thesis by providing suggestions

for future work and and summarising the findings.

1.2 Notations and terminology

• ’Target code’ or ’Target Instructions’ refer to the instructions of the guest architecture

that is being simulated; in this work, it refers to the ARM processor instructions;

’host’ refers to the machine the simulator is running on i.e. an x86 in this case.

7

• The terms ISS (Instruction-Set Simulator), ’simulator’ and ’emulator’ mean the same

thing, are often used and are interchangeable.

• The term cache unless otherwise specified, refer to the simulator’s translation cache.

• The term ’Block’ usually, unless specifically stated refers to a fixed-size chunk of the

ARM memory space containing instructions that has been cached.

• A ’Basic block’ is different from a ’block’. A basic block of instructions is one with

which there is only one entry point, no branch/jump instructions in between and

terminated by a jump or branch

• The terms ’Block’ and ’DLL’ all refer to a unit of cached code in the simulator’s

translation cache and are interchangeable.

8

Chapter 2

Literature Review

There are many ways to create an Instruction-set Simulator. Sometimes, speed is not

the only definitive characteristic of a quality emulator. Performance also conflicts with

flexibility and accuracy. Depending on the usage of the Simulator, engineers use them to

emulate new architectures or develop firmware or software for a new architecture that is

not released. In such a case, fine-grained simulation of various aspects of the new hardware

have to be catered for. Overall it is a cumbersome problem to develop fast emulators while

ensuring its accuracy at the same time. In this chapter, the types of simulation are briefly

described, then the various techniques of simulation are discussed and finally related work

on sequential and parallel simulators are briefly examined.

2.1 Types of Simulation

Broadly, there are two main types of architecture simulators: Cycle Accurate Simulators

and Functional Instruction Set Simulators.

2.1.1 Cycle Accurate Simulation (CAS)

A Cycle Accurate Simulator simulates new or present micro-architecture designs and in-

cludes timing information and pipeline simulation. This type of accuracy is useful for time

dependent applications such as process control but is usually much slower than a func-

tional Instruction Set Simulator. Timing information may not be completely accurate but

9

a tolerance level of ±7% is quite acceptable. These types of simulators are usually used for

examining properties of new processor micro-architecture designs and low-level software

verification.

FacSim [9] is an example of a cycle-accurate simulator. It uses multi-processing to

simulate the ARM9E-S processor core and ARM926EJ-S processor’s memory subsystem.

FaCSim exploits the functional model/timing-model decoupling [9], and is divided into a

functional front-end and a cycle-accurate back-end that can be run in parallel.

2.1.2 Functional Instruction Set Simulation (ISS)

An Instruction Set Simulator mimics the behavior of a micro-controller by examining target

instructions that maintain variables that correspond to the state of the simulated proces-

sor. It loses the timing accuracy of a CAS but does ensure that target code runs correctly

on a host machine. As it does not simulate minor details of the hardware, an ISS is usually

much faster than CAS. It is usually used to verify the correct functionality of a program

written for the new target hardware before it is available.

Most of the literature survey done in this project focuses on Functional Instruction-set

Simulators.

2.2 Techniques for Designing Simulators

There are various strategies to design an architecture simulator, some provide better speed

or accuracy than others, each has its uses and merits.

2.2.1 Interpretive Simulation

This is the simplest way to design an ISS or CAS. The approach is to interpret each

instruction and execute them step by step using a big switch statement on the host machine

operating over the simulated state of the target hardware. Figure 2.1 shows an outline

algorithm of this approach. This is a very flexible approach and because it is easy to

implement, work has been done to generate (or synthesize) such types of simulators quickly

from Architecture Description Languages (ADLs). However, despite its flexibility and

10

while(running){

next_instr = get_PC();

instr = decode(next_instr);

switch(instr){

....

add: perform_add(op_1, op_2);

...

}

}

Figure 2.1: The typical interpretive simulation template algorithm

ease of implementation, interpretive simulators are also by far the slowest in simulation

performance.

Again, FacSim [9] is a cycle-accurate simulator that interprets instructions for accu-

racy; as it separates the functional front-end from its cycle-accurate back-end via a non-

deterministic queue so it is possible to use a multi-processing approach to speedup cycle-

accurate simulation (see figure 2.2). Furthermore the high number of hardware components

to simulate in a CAS justifies the use of more processors for produce better speedup [15].

Figure 2.2: FacSim’s [9] seperates Functional simulation and Cycle Accurate tracing for
parallelism

11

2.2.2 Binary Translation

This technique is common in adapting a legacy piece of program to run on a newer platform.

E.g. code for a PowerPC Mac on an Intel i386. Examples of systems that use the binary

translation technique include VMware[2], Bochs [3] and UQBT[4]. The approach is slightly

more complicated. The legacy program’s binary code is translated directly (or through an

intermediate representation in some cases like in figure 2.3) and the program operates

on the host machine’s devices. This process is usually much faster than the interpretive

approach as only the instruction’s sematics are different (i.e. an add instruction on RISC

vs an ADD x86 instruction, exception being use of flags on an x86). Figure 2.3 shows

the typical process of simulators that use the Binary translation approach. On the other

hand, it is unable to emulate the state of the target hardware and is usually unsuitable for

verification of new design of hardware devices such as in a CAS. There are two main ways

of doing Binary Translation, static and dynamic.

lw r3, 14(r1)
add r4, r3, r2
j 0x48234

Target Binary

Load T1, regs[1]
Load T2, 14(T1)
Store T2, regs[3]

Load T1, regs[2]
Load T2, regs[3]
Add T3, T1, T2
Store T3, regs[4]

Store 0x48234, PC
Jump main_loop

Translated Code

Optimisation

mov 0x3(%ebp),%ebx
add $0xfffffff0,%ebx
mov %ebx,0x4(%ebp)
jmp [ebx]

Host Instructions

Figure 2.3: Binary translation and optimisation process

2.2.3 Static Binary Translation

Binary translation can be done statically by translating the whole target binary into host

binary. This process is very much like compilers or language byte-code translators. The

resulting program then runs as usual on the host machine.

The main advantage of this approach is that it runs the translation process only once.

The resulting code can be run quickly for as many times as desired (until there is a change

12

in the source code or binary). The resulting code is also fast as various types of optimisa-

tion passes can be done at compile/translation time.

On the other hand, this approach is not flexible. On standard von Neumann Architec-

tures, data and code reside in the same memory space, making this process difficult due

to the problems such as dynamic linking and self-modifying code[1]; a technique used by

boot-loaders and encryption software. If the program is large, a lot of time will be spent

waiting for code to be fully-translated. This is also not beneficial on a developer’s point

of view as changes to source code can are made and are optimised very frequently. The

entire program has to be re-translated on every change, be it small or large.

2.2.4 Dynamic Binary Translation

Dynamic Binary Translation translates along with program execution. Unlike the static

approach, dynamic binary translation usually only translates (typically basic blocks) code

when it is needed. Translated code are also cached in case they are needed again and there

are usually rules for evicting cached entries much like an operating system manages its

virtual memory.

This approach has some advantages over static translation. Firstly, there is the benefit

of flexibility. It is possible to simulate self-modifying code and dynamic linking. Secondly,

there is also no start-up latency for translation before program simulation. Redundant

code not executed during a specific test run will not be translated. Saving some storage

space and potentially reducing overall translation effort.

However, dynamic translators are slower to execute due to the fact that translation

happens along with execution. If the translation effort is large, the program is short or

cached entries are not frequently used (poor instruction locality) the translation overhead

will be higher than cost of running the translated code.

Shade [6] was one of the first Processor simulators that used dynamic binary translation

and caching. It is used to trace SPEC benchmarks on SPARC systems to help build better

SPARC hardware and software.

In [7], Embra simulated a MIPS R3000/4000 running SPEC92 benchmarks on a Sili-

13

con Graphics IRIX 5.3 at 3 to 9 times slower than native execution of the workload. It

demonstrated the capabilities of dynamic instruction translation of the simulated hardware.

To facilitate target-adaptability, researchers from University of Queensland and Sun

Microsystems proposed a machine-adaptable dynamic binary translation approach in 1999

[4]. However, porting to another host machine requires extensive assembly debugging and

testing.

QEMU [5] is a very fast machine simulator used to run simulate full machines with

their target OS images on different host architectures. However, it is not easily portable

and target-adaptable. Hence, its purpose is mainly used to run foreign Operating Systems

in virtual environments.

As very little1 time is spent on translating code in binary translators like QEMU. It is

not of much worth performing translation in parallel. As a programming language is not

usually used for binary translators, it is more difficult to optimise translated code.

2.3 Compiled Simulation

Compiled Simulation is very similar to binary translation; except for the fact that a pro-

gramming language is often used as the intermediate representation for translation. This

is to provide portability of the simulator. In other words, the simulator can be run on

various types of host hardware. Like binary translation, compiled simulation also can be

done statically or dynamically.

The main advantage of this approach is that the simulator can be ported with little

effort to another architecture. This is beneficial if the organisation deploys various plat-

forms of computers that will be used for design and simulation.

The main disadvantage is the additional overhead introduced by translating from target

Instructions to the High-Level language (i.e. C++) and compiling the consequent C++

code to host instruction set. This is especially so if it is implemented dynamically. Some

1QEMU spends on average only 1.7 seconds on translation in 4 benchmarks tested for another project
underway by Andrew Jeffery. This is a small value compared to several seconds to a few minutes in
SimIt-ARM

14

JIT interpretive-compiled simulation techniques such as SimIt-ARM [10], EHS [14] and

the Java Programming Language use an interpretive mode at the beginning to profile code

before starting translation so the performance of short programs is limited by the speed

of the interpretive simulator. It also suffers from the initial latency when running slightly

longer user-interactive programs.

Zhu et. al. [8] is an example of a static compiled, just-in-time simulation technique

for fast and flexible simulation. Their approach is quite different to the overall simulation

technique used by SimIt-ARM as it uses a hardware independent register allocation inter-

face together with a standard C compiler for code generation.

As compiled simulation uses a programming language as the intermediate form, it can

potentially take a very long time to translate code as speed is dependent on the decoder

and the compiler of the language. Hence it is worthwhile to do translation in parallel for

a simulator that uses the compiled simulation method.

SimIt-ARM is described in the upcoming chapter.

2.4 Generating a Simulator

Due to the need for modularity and target-adaptibility, simulators are sometimes not hand-

written. An interpretive simulator is easy to implement so it is usually generated. As a

compiler’s code generator engine is used in compiled simulators to produce host machine

code, there is also better modularity and simplicity in implementation. Hence, like interpre-

tive simulators, many compiled simulators are also generated instead of being hand-written.

In the literature, [8], [10], [11] and [14] are examples of compiled simulators synthesised

with (Architecture Description Languages) ADLs. Usually, an architecture’s instruction

set, (i.e. fields, op-codes and operands) are described in a file. Then a decoder for the

instruction set is generated; after which the peripherals and devices are described. Finally,

the ISS is generated from these input files. On some implementations like in [19], a target

program for the guest machine is also used one of the input to examine the behavior and

generate a simulator.

15

Chapter 3

SimIt-ARM-3.0 - A Multiprocessing

ARM ISS

SimIt-Arm is a series of Instruction set Simulators done by Wei Qin et. al [10]. It is the

main tool used in this project to explore threaded simulation on x86 chip-multiprocessors.

It runs both system-level and (statically-linked) user-level ARM programs. It currently

does not support Thumb(R) instructions. SimIt-ARM employs two styles of simulation:

interpretation and dynamic-compiled simulation. It is developed for the IA32 Linux plat-

form but since it uses dynamic-compiled simulation, it should in principle, work for other

platforms as well. SimIt-ARM is free, open-source software under the GNU General Public

License. This section introduces the internals of SimIt-ARM v3.0.

3.1 Interpretive and Dynamic-compiled simulation

SimIt-ARM starts off by interpreting the ARM instructions using its interpretive mode.

When it discovers that a block of instructions are executed for a certain threshold amount

of times, it translates that block of ARM instructions to a C++ function. It then uses

GCC to compile the said C++ function to a linux shared library which is then linked into

the simulator engine. Figure 3.1 shows the overall design of SimIt-ARM.

16

Fetch Decode Execute

Call Cached DLLCached?

Hit Threshold?

Enqueue

Translation Queue

To Slave Threads

yes

no

no

Interpretive Simulation

yes

continue

Figure 3.1: Overall Simulator Organisation

3.2 System and User Level Simulation

SimIt-ARM supports the simulation of User-space programs as well as System-level emula-

tion. For system emulation, it is capable of booting up an ARMLinux image on a simulated

ARM device operating over the host machine. The latter is possible as the flexibility of

dynamic-compiled approach makes it possible to detect and simulate self-modifying code.

There are different variations of compiled simulation. In many cases, C++ code is used

as the intermediate representation of translation. The simulation engine simulates several

instructions in each calling of a compiled routine. Some compiled simulation approaches

such as IS-CS [8] simulates one instruction in a call to the cached routine. In contrast,

SimIt-ARM uses a 512-word block of instructions so that one call to the cached routine

simulates many instructions at once. Figure 3.2 shows the process of translation in SimIt-

ARM.

3.3 Translation Caching

The basic translation unit is a block of ARM instructions with a predefined size. For

user-level programs, a 512-word translation unit is used as it can be readily aligned at a

17

lw $8, 0($9)  
bnez $8, 8000 
addi $9, $9, 4 
move $2, $9  

Target Page 

addr_t page_8000(iss_t *iss, addr_t pc)  
{  
      assert(pc >= 0x8000 && pc < 0x8010);  
      switch (pc) 
      {  
          case 0x8000:  
                iss‐>set_reg(8, iss‐>mem_read_word(iss‐>get_reg(9)));  
          case 0x8004:  
                if (iss‐>get_reg(8)!=0) {  
                     iss‐>set_reg(9, iss‐>get_reg(9) + 4); 
                     goto L8000;  
                 }  
          case 0x8008: iss‐>set_reg(9, iss‐>get_reg(9) + 4);  
          case 0x800c: iss‐>set_reg(2, iss‐>get_reg(9));  
      }  
     return 0x8010;  
}   

Translated Function 
Compilation & 
Optimisation 

mov 0x3(%ebp),%ebx  
add $0xfffffff0,%ebx 
mov %ebx,0x4(%ebp) 
jmp   [ebx] 

Host Instructions 

Figure 3.2: Instruction-set translation, compilation and optimisation process in SimIt-
ARM [10]

2KB boundary. For system mode emulation, a 256-word translation unit is used as it has

to support ARM devices’ Tiny page sizes and a code block has to be aligned according to

these specifications.

In the source-code, it is deduced that the translation cache indexes up to 221 locations

of 512-word blocks when running in user-mode and 222 locations of 256-word pages in sys-

tem emulation to map physical-pages on the target ARM device.

A 512 or 256 word block of translated code is aligned at physical address boundaries.

This is to facilitate the computation of instruction block address mapping to the simulator’s

physical memory space [10]. In user-mode simulation, no eviction strategy is used for

removing stale cache entries as it is generally assumed (by inspection of the source code)

that the size of the Translation cache look-up table indexes 221 × 512 words; a size big

enough to index the largest target ARM program. In system mode when self-modifying

18

code is detected, the cache entry affected by the over-written code is then removed from

the cache look-up array. The cache related files on disk are not removed so that subsequent

runs of the virtual environment can be faster due to persistent caching (discussed in the

next sub-section).

3.3.1 Persistent Caching

SimIt-ARM uses a hidden folder in the user’s home directory as a base for its translation

cache. Because it is stored on the disk. Cached code can be re-used for subsequent runs

of the same program. The translation cache consists of the following:

• C++ files that contain the C++ function that represents the block of translated

code.

• A Dictionary that contains the file index of the C++ functions and their cor-

responding checksum value. The checksum is obtained by adding all bytes of the

instruction words in a block. A single read to the dictionary file will reveal if the

block of code is familiar to the simulator engine. It is used in conjunction with the

raw binary files to do matching as checksums may collide at a low probability with

various combinations of the same instructions.

• Raw ARM binary block files that corresponds to 512/256 (depending on mode)

words of the ARM code that has been translated. They are used to match if the

block of instructions in memory matches that in the file.

• DLL files that contain the compiled C++ functions hat corresponds to the trans-

lated block of ARM instructions. These files are loaded into the simulator engine

when it finds the same code on a subsequent run.

3.3.2 Block Linking

The translated code blocks are linked together via a loop and during jumps and condi-

tional branches to a destination outside of the block, it is checked that if the next executing

block is also cached, it immediately jumps into the next cached block; instead of returning

to the interpretive dispatch loop. Otherwise, it exits the cache loop and continues with

19

interpretive simulation. Figure 3.3 shows the cached vs interpretive dispatch loop.

while(running)

{

//cached part

while(PC_value = cached_entries[PC%blockSize])

{

call_cache(&cached_entries[PC%blockSize]);

}

next_instr = get_PC();

instr = decode(next_instr);

//interpretive part

switch(instr)

{

....

add: perform_add();

...

}

}

Figure 3.3: Switching from interpretive mode and back

3.4 Floating Point Simulation

Currently, the simulator does not support Floating-point code. If it encounters a piece of

floating point instruction, it calls the host OS implementation of floating-point emulation

library (usually NetWinder) or other Soft-float techniques to simulate the instruction.

3.5 Self-Modifying Code

SimIt-ARM simulates self-modifying code by using the setjmp or longjmp routines as

part of the ANSI C library to throw an exception. All memory operations are monitored,

if a memory write occurs to a block that has been compiled/translated, an exception is

20

triggered to interrupt simulation. The translated shared library that corresponds to the

modified block is then unloaded and simulation resumes.

3.6 Multiprocessing

Compared to the direct translation approach in QEMU [5] or UQBT [4], the GCC-based

approach is easier to implement and is highly portable. However, this comes at the cost

of translation speed. To reduce translation delay, SimIt-ARM distributes translation tasks

to other CPUs/cores or workstations via either pthreads on a single node with shared

memory chip-multiprocessors or sockets on distributed memory clusters respectively. The

authors tested SimIt-ARM 3.0 on a cluster of 6 commodity PCs but official figures for

chip-multiprocessor runs are not available.

3.7 Devices

SimIt-ARM has classes for a co-processor, an MMU and a soft-UART controller for a

terminal device. A TCP/IP stack is available on the packaged ARM-Linux Images but a

simulated Ethernet device is not yet available.

3.8 Debugger

In SimIt-ARM, there is a light-weight debugging interface that allows the programmer to

step through the program and dump of status register and memory values.

3.9 Simulation synthesizer with MADL

SimIt-ARM’s binary decoder and Simulation engine are synthesized using the Mescal Ar-

chitecture Description Language (MADL) [11]. This approach is able to easily develop

and test new architectures by just describing them using the MADL and its novel concur-

rency Operation State Machine (OSM) model. The description language can also be used

to generate fast and highly accurate decoders for the another described architecture (i.e.

the DLX machine in our school). SimIt-ARM-3.0 is largely generated using MADL. The

only hand-coded parts of the simulator are the sockets and threading model used in doing

21

multi-processing simulation. To date, the current MADL implementation is currently able

to generate only interpretive and single threaded compiled simulators.

22

Chapter 4

Methodology

4.1 Overview

SimIt-ARM shall be built and tested with default parameters on 1-4 cores/processors.

Following which the many ways to exploit parallel execution of a simulator to improve

simulation performance are explored. Among them are the usage of different programming

models (various shared memory threads), improving utilisation of slave processors/threads;

various methods of improving utilisation include online code reoptimisation, translating

target code at higher initial optimisation levels and pre-prediction of frequently executed

blocks. Attempts to improve locality of translated code is also made in the form of copying

the whole operation of the Simulator into a portion of the host ramdisk and producing

executable images instead of the heavier DLLs. The details of each experiments and

problems encountered are described.

4.2 Investigating Parallel Programming Models

There are various parallel programming models available today. Some used the shared

memory architecture and another paradigm uses the distributed memory model.The per-

haps most popular distributed memory model is MPI (Message Passing Interface). The

ones relevant to the problem at hand, which is to investigate running efficiency on chip

multiprocessors (a kind of shared momory machine ubiquitous today) are OpenMP and

Pthreads. Results from comparing the threading models are in section 5.2.

23

4.2.1 POSIX Threads (Pthreads)

Pthreads or POSIX threads is a Unix standard for creating threads on most flavours of

Unix based Operating Systems including Linux and Mac OS X. Programmers can use

Pthreads to create, manage and manipulate threads with synchronisation primitives like

wait, signal and mutexes. It has been used for many years on the Unix platform and with

the advent of Mult-core x86 Unix systems, porting a program to exploit the parallelism

available using pthreads is readily convenient.

Pthreads is also the original threading model used by the authors of SimIt-ARM to do

parallel simulation on one desktop node.

4.2.2 OpenMP

The OpenMP (Open Multi-Processing) is an application programming interface (API)

that supports multi-platform shared memory multiprocessing programming in C, C++

and Fortran on many architectures, including Unix and Microsoft Windows platforms. It

consists of a set of compiler directives, library routines, and environment variables that

influence run-time behavior.

4.3 Improving Quality of Translated Code

In SimIt-ARM, target code is initially interpreted by an interpretive simulator. As the

interpreter runs for a while, commonly executed code is earmarked for translation from

ARM Binary to a C++ function, which is then compiled to a shared library object of the

host platform. This translation process in the original implementation of SimIt-ARM-3.0

is making use of g++ as its intermediate translation engine.

It is hypothesized that there is not a lot of time spent in translation since it takes 0.9

seconds to translate a DLL [10] but this largely depends on the nature, size and the locality

of the program. Thus one of the opportunity that arises from the use of multi-procesing is

that time can be spent to improve the quality of the code in parallel since the locality of

programs can mostly be deterministic (i.e. 80-90% of the code is spent executing 10-20%

of the code).

24

There are 3 main experiments that are conducted. First, the translated (or cached)

blocks are examined for stitching opportunities to improve simulation performance. Next,

various optimisation level passes shall be performed on translated code and finally more op-

timisations can be done at runtime to the already translated code to improve code quality

when slave processors are idle. The results of these experiments are discussed in section 5.3.

4.3.1 Stitching Translated Blocks

As blocks of program code are translated, they can form disjoint portions of the original

program. Since SimIt-ARM uses a cache that is directly mapped, the process of running

code from the cache can be improved slightly. Figure 4.1 shows how cached code blocks

can be linked to reduce the overhead of frequently jumping from the main interpretive

simulation mode to compiled simulation mode and vice-versa.

Main Simulator Loop
Cached ARM Page 1
0x8000 - 0x87fc

Cache ARM Page 2
0x8800 - 0x882f

while(running)
{
 if(PC_value = cached_entries[PC%page-size])
 call_cache(&cached_entries[PC%page-size]);
 else{
 next_instr = get_PC();
 instr = decode(next_instr);
 switch(instr)
 {

 add: perform_add();
 ...
 }
 }
}

Better Path

Figure 4.1: Disjoint translated blocks

Two main experiments are conducted namely:

• How many times does the simulator switch from compiled simulation to interpretive

simulation?

• Increasing the size of the translation unit for user-mode emulation

The results of stitching translated blocks are described in section 5.3.3.

25

4.3.2 Using Higher Optimisation Levels

As an optimising compiler, g++ has mainly 3 levels of optimisation available. Namely -O1,

-O2 and -O3. Some optimisation passes in these options are useful to an ISS; especially

those related to the code generation phase. They are briefly described below.

• -O1 - The useful optimisation passes at this level are: -finline-small-functions

and -fomit-frame-pointer. There are many small functions in SimIt-ARM’s simu-

lator engine. Inlining them would reduce the amount of host assembly code perform-

ing call setup clean up and linkup for only a small, short function call. The latter

pass, -fomit-frame-pointer however has to be flagged manually as g++ do not use

it by default on x86 hosts.

• -O2 - The -fpeephole2 optimisation from -O2 can do more optimisation on small

units of host instructions. This can be useful for smaller block sizes like in System-

level simulation.

• -O3 - This switch turns on many optimisations that increase code size and compile

time. One of the useful optimisations are -fpredictive-commoning that reuses

computations like memory loads and stores performed in previous iterations of loops.

Compiling at -O3 also inlines larger functions. The flag -finline-limit is also set

to 5000 so that a function simulating a block of translated code can fit in its inlining

heuristic.

There are also many machine specific options such as -mtune and -march that tunes

code to specific CPU types i.e. SSE2 instructions for Pentium(R) 4 processors.

As an initial experimentation effort by the designers of SimIt-ARM, it was assumed

that many blocks will be translated and they will have to be translated as quickly as

possible. Hence the initial design decision in SimIt-ARM [10] was to cap the translation

effort to level -O1 in g++. This ensures that the code translated will be fairly efficient and

translation time is at the same time minimised.

On the other hand, code that is heavily utilised can be translated at a higher optimisa-

tion level since most of the time, the program will run disproportionately at a few specific

regions. Hence, a few more experiments are proposed:

• Identify amount of time spent in translation

26

• Translation of target code in parallel using -O2 and -O3 on g++

• Use no optimisations

The results of using high Optimisation levels are revealed in section 5.3.1.

4.3.3 Idle-Time re-optimisation

In SimIt-ARM, target code is first compiled with minimal optimisations so that transla-

tion/compilation speed is fast. In idle periods where some threads sleep, a timer interrupt

checks if the idle period has exceed the specified time. If it does, it wakes up the threads to

perform re-optimisation of the blocks at a much higher optimisation level. The re-compiled

DLL is then reloaded when the main thread is not executing the freshly re-optimised block.

Figure 5.7 illustrates the process of idle-time re-optimisation.

Optimising the cache during idle periods on slave processors is challenging. This is

mainly due to 2 factors:

1. When to do re-optimisation

2. How many blocks to re-optimise at one time.

If a new block in the target program is identified for translation when a slave thread

is currently performing a re-optimisation task, the main simulation thread has to perform

more interpretation on the newly idenfitied block. As it is a frequently executed block,

the performance is affected. This delay is called the missed opportunity cost. To address

this problem, a timer is placed to check if the slave threads have been idle for a specified

interval. This interval of idle period has to be chosen carefully, if it is too long, very few

blocks will be reoptimised, if it is too short, it will stand a higher chance of clashing with

the arrival of tasks to translate newly identified blocks.

To help choose the appropriate interval, the following formula is used to compile code

at a dynamic idle period and back-off once a new DLL has be compiled or an old DLL has

been re-optimised:

idle thres =
2.0

idle interval + 0.1
× 5.0

27

Running in 
Optimised Cached 

Code 

Running Very 
Optimised Cached 

Code 

Interpretive Mode 

Main‐Thread  Slave‐Thread 

Ti
m

e

Translates/
Compiles Code 

Reoptimises 
Existing Cached 

Code 

Idle 

Idle 

Idle 

Figure 4.2: Idle time Re-Optimisation

Where idle thres is the idle interval threshold in seconds to issue the re-optimisation wake

up signal for the sleeping threads and idle interval is the real amount of time (also in sec-

onds) the slave processors have been idle. The idle interval is feedbacked into the formula

to re-adjust the idle thres. As the idle interval grows, the idle thres decreases.

The resulting high level code for the body of a slave thread is shown in figure 1 in the

appendix. The results of idle-time re-optimisation is shown in section 4.3.3.

28

4.4 Improving Locality of Translations

Doing compilation as a form of translation style seems to incur huge I/O costs during

simulation. Various ways are proposed to reduce the cost of I/O in compiled simulation.

4.4.1 RAM Disks

Most flavours of Unixes including Linux have a RAM-Disk partition known as /tmp or

/dev/shm/. These portions of the space is actually used by the operating system to store

temporary files and user program variables. It is postulated that translating and storing

the shared library objects on the RAM-Disk would yield faster lookup and cache writing.

The results of using a RAM-Disk is shown in section 5.4.2

4.4.2 Producing Code Images

In the first instance, the aim is to replace the DLL caching scheme with a direct dynamic

code generation method into SimIt-ARM. This means changing the part that creates the

DLL and the part that loads the DLL. The outcome should be that the simulator ends up

running the same code with less overhead than with a DLL. More about the outcomes and

problems of this experiment is discussed in section 5.4.1.

4.5 Reducing Time Spent in Interpretation

As described in the section 2.3, the performance of Interpretive simulation is slow. Since

both interpretive and compiled simulation schemes are used in this simulator, ideally, it

should spend most of the time running cached instructions. However, this is currently not

really the case. A few experiments are conducted to see if its possible to reduce the amount

of time spent interpreting the instructions.

4.5.1 Speculative Translation

This problem may be solved with a predictive heuristic that speculatively and proactively

translates the blocks of target code hopefully before it is executed. Successful predictions

can further reduce the number of interpreted instructions.

29

To determine the potential benefits of doing the translation predictively, a 100% ac-

curate prediction, negligible-time prediction algorithm is mocked up. The procedure is as

follows, a benchmark is run normally to discover which blocks are being used in the run.

After that, the identified blocks are hard-coded to be pushed onto the queue at the start

of the simulation for slave threads to begin their work. The same procedure is repeated

for each of the five benchmarks.

There are two ways in which cached blocks are being identified. To simulate a con-

servative heuristic, the threshold can be set to the default value of 16 million so that the

mock-up prediction is more careful its selection (fewer but very heavily executed blocks

will be identified). A more aggressive heuristic can simulated by using a lower threshold

so more blocks will be identified and translated.

Discussion on the results of speculative translation is available in section 5.5.2.

4.5.2 Varying Translation Threshold

Currently, the simulator utilises a simple block history heuristic to detect most frequently

executed instruction blocks for translation. The threshold is set by the user in values to

the power of 2. For system emulation this value is set at a boundary of 216 instructions

and for user-mode emulation, 232. A lower threshold value can mean that more blocks can

be selected for compilation/translation and can affect simulation speed. However, more

time can be spent translating less-frequently executed blocks and very hot-code may be

given less attention. A higher threshold value can mean translation focused on frequently

executed code. On the other hand, there is a missed opportunity cost can be incurred

through interpreting the block of instruction for too long before it is cached.

Higher translation threshold values can also mean higher utilisation for slave processors.

The threshold values being tested are much lower than the default 16m. The interesting

values in the original paper [10] are 1m and 2m so these two values are tested. Not all

threshold values are tested as it will create more combinations and more time is needed to

test all of them.

Results on varying translation threshold are discussed in section 5.5.1.

30

4.6 Test Setup

SimIt-ARM-3.0 is configured, build and installed and run on a Desktop with an Intel(R)

Core(TM)2 Quad CPU Q8200 running at 2.33GHz. The Desktop runs Ubuntu Linux 8.10

with version 2.6.27-11 of the kernel and Native POSIX Threads Library (NPTL).

The simulator is compiled using gcc-4.2 with -O3 -fomit-frame-pointer

-finline-limit=5000. This is so that the compiler inlines functions sufficiently large for

many redundant host assembly call setups and cleanups to be eliminated. Switching on

-fomit-frame-pointer also removes the stack frame pointers that is only necessary for

debugging but will reduce simulation speed.

During the dynamic compiled simulation process, the g++ flag, -pipe is also used so

all data in the intermediate compilation process is done in memory.

The simulator is mainly tested with 5 different SPEC INT 2006 benchmarks [16]. For

each of the benchmarks, the first reference input provided by SPEC are used. The test

input is sometimes also used as experiments for various short program length tests since

the reference inputs take a long time to execute. As there are possibly many tests combi-

nations to be run; not all of these combinations are tested. It is also because tests have

to be run at least 3 times and the results collected averaged with the geometric mean.

The benchmarks are selected based on real world user space usage of a typically complex

mobile electronic devices today. The benchmarks are:

• 473.astar - an A*Star search algorithm for 2D-maps to simulate a program for GPS

devices.

• 401.bzip2 - a file compression tool from Julian Seward version 1.0.3, modified to do

most work in memory. Simulates opening and making archives on a smart-phone.

• 455.gobmk - a board game of Go, a simply described but deeply complex game.

• 464.h264 - A reference implementation of H.264/AVC. Mocks up video encoding for

digital, video cameras and also smart-devices.

• 458.sjeng - A highly-ranked chess program that also plays several chess variants.

31

On top of these benchmarks, some smaller benchmarks are also used to test quick exper-

imental modifications to SimIt-ARM. They are mentioned along-side with the experimental

results.

4.7 Metrics

To measure the performance of the simulator, there are more variables to consider than

just the wall-clock time. Therefore, a few more parameters can sometimes be considered,

they are:

• Utilisation - also expressed in %, this is usually available on most Unix systems’ time

command. A higher utilisation leads to better multi-processing justification.

• Translation Delay - denoted t(b) expressed in seconds is the time from which a block

is first interpreted to the time the block is cached.

The average translation delay denoted α is an important effectiveness metric for trans-

lation schemes (i.e. translation threshold and proactive compilation strategies), it is a

measure of how much time on average does a block spend in interpretive mode. Let b be

a block and C be the cache lookup table where {b : b ∈ C}, the α for a run is calculated by:

α =

∑
∀b∈C t(b)

|C|

In general, a lower value of α means code is identified and cached early. Lower α values

does not mean better performance as fast translation may occur at the cost of optimisation.

32

Chapter 5

Results and Discussion

Unless specifically stated, all runs are made with the first reference input of the SPEC

CINT 2006 benchmarks.

5.1 Original Simulator Results

SimIt-ARM is ran with the default settings to measure overall performance and speed-up.

Figure 5.1: Speedup in original configuration

Chip-based Multi-processing offers significant improvements. As shown from figure 5.1,

the use of more cores however, does not guarantee further improvements. Note that the

33

main purpose of multiprocessing in SimIt is to do the most labourous part of simulation

(which is translation) along with program execution to reduce dynamic-compiled simula-

tion overhead. Therefore, speedup is proportional to the number of blocks being translated.

Speedup achieved also depends on the length of a program; it varies between 1.01 for

long (3 hour) programs and 1.4 for a 100-second short programs (using reference and test

workloads of the sjeng benchmark respectively) depending on the total run-time of the

target program. Note that the test workload of the sjeng benchmark is used in figure 5.1

as an indication of a case with higher speedup.

5.2 Results on different threading models

1406.97 

1341.17 

1442.98 

3223.80 

11905.80 

1560.03 

1411.13 

1514.02 

3494.20 

11962.70 

0  2000  4000  6000  8000  10000  12000  14000 

astar 

bzip2 

gobmk 

h264 

sjeng 

Speed in Seconds ‐ 2 Processors (Less is better) 

Experimental Configurations 

OpenMP 

Original 

Figure 5.2: Open MP with 2 processors

OpenMP, has no wait and signal primitives; threads have to poll to check if there is

translation work one at a time (see figure 5.3). Comparatively, Pthreads have a func-

34

tion called pthread cond wait that makes it more suitable for the task at hand. So far

OpenMP is perhaps best used in algorithms with which the amount of unit of load is

known in advance. With the dynamic nature of code translation, units of work arrive at

stochastic intervals.

As busy wait wastes processor cycles in an environment with only 2-4 PEs, the use of

OpenMP results in poorer performance (refer to figure 5.2) . Busy waiting is only useful

where there are a lot of other computation tasks for many processors. However, there is

only one queue (or pool of tasks) at any one time. Without the primitive contruct wait

that allows threads to sleep while waiting for the queue to be non-empty, the problem

become accentuated.

The effects of False sharing is also magnified in this scenario. In this simulator, threads

share many variables that might be stored in different cache lines on the host system. The

effect is not propagated when threads sleep when there are no translation tasks.

When programming Pthreads in a busy-wait fashion, the same slowdown effect is also

replicated. Figure 2 and 3 in the appendix shows the pthread and OpenMP implementation

of the slave thread code bodies for performing translation tasks respectively.

35

It is recommended that the OpenMP team should make available a few more critical

constructs wait and signal to software engineers so that programs that deal with real-

time work load arrival and dispatch is more smoothly dealt with on machines with less

processors. Unfortunately, it is not available yet at the current upcoming version 3.0.

void get_block_to_compile(unsigned *dll, unsigned *pblk)

{

//PID_LIST are translation requests from the main thread

omp_set_lock(&pid_mut);

if (PID_LIST->empty() && !running)

{

omp_unset_lock(&pid_mut);

return false;

}

*pblk = PID_LIST->front();

PID_LIST->pop_front();

*dll = dll_ind++;

omp_unset_lock(&pid_mut);

return true;

}

Figure 5.3: OpenMP version of translation job queue, note the absence of the wait con-
struct

On the other hand, algorithms with simple work sharing schemes often perform much

better in OpenMP and are also very easy to code. A classic simple example is one with the

following program that calculates an approximation of the value of pi π using the following

equation with N = 730000000:

π =

∫ 1

0

4

1 + x2
dx =

N−1∑
i=0

4

1 + (i+0.5
N

)2
× 1

N

Figure 4 and 5 in the appendix shows the OpenMP and Pthreads’ pi calculation pro-

gram respectively.

36

Procs. OpenMP Pthreads
2 3.47s 6.513s
3 2.35s 5.071s
4 1.81s 4.721s

Table 5.1: Performance of OpenMP and Pthreads doing coarse grained π computation

In short, OpenMP works well at a fairly coarse-grained level (see table 5.1). It is mas-

terly in its ability to perform data decomposition on loops, assigning tasks to individual

threads, and other high-level operations. However, the design of an Instruction-Set Simu-

lator needs to perform fine grained control of threads making OpenMP is less suitable [13]

than native API sets like Pthreads.

In a different simulation approach such as with predictive translation, OpenMP will be

able to know the workload at program start. The size of an executable is usually fixed

unless there is self-modifying code. Hence it would be interesting to see how the OpenMP

model will perform when placed into such contexts of simulation.

5.3 Results with optimising code quality

Doing translation without optimisation results in poorer performance. A test workload

of the 429.mcf benchmark takes 27 seconds to run in -O c.f. 83 seconds without any

optimisation. In general, optimising code in parallel pays off; as the overhead in translation

is moved to another processor, more powerful optimisation passes can be used without

affecting performance too much. This section shows the results of the various experiments

on optimising the translated code.

5.3.1 Results on translating at higher Optimisations

To reveal the costs of compiled translation at high optimisation levels, as mentioned in

section 4.3.2, the amount of time spent on translation is first investigated.

Amount of time spent on translation

As shown in figure 5.4, much of the time is spent in executing the translated code. Each

translation takes about 1.2s on -O and 2.9s -O3 on average; hence in the time spent trans-

37

Figure 5.4: Ratio of time in translation to code execution for the (test) h264 benchmark

lating in the h264 test load benchmark shown in figure 5.4 is only about 90 seconds if done

in -O and 142.5 seconds in -O3. Note that, the longest amount of time spent in transla-

tion with respect to overall runtime is the h264 benchmark because of the poor locality of

instruction execution.

From this, the proportion of time spent in translation depends on a few parameters:

• Threshold value - A lower threshold value, means more time is spent in translating

• Optimisations - As mentioned earlier, doing higher levels of optimisation not only

increases code size but also gives longer compilation times.

• Locality of the target program - If the program spends most of the time executing

only 10% of the code, only a few blocks need translation. If this is the case, optimising

that 10% will provide a disproportionate amount of improvement.

Adding more optimisations during compilation will further increase the translation time

and add on to α, the translation delay.

Note that all these benchmarks execute for at close to at least 20mins. For all these

runs, higher optimisations seem like a better value (refer to figure 5.5), on the other hand,

38

1406.97 

1341.17 

1442.98 

3223.8 

11905.8 

1445.88 

1264.88 

1391.14 

3207.72 

11702.79 

1367.7 

1243.9 

1347.14 

3168.77 

11562.86 

astar 

bzip 

gobmk 

h264 

sjeng 

0  2000  4000  6000  8000  10000  12000  14000 

Seconds 

Effects of Optimisation ‐ 2 CPUs 

O3 

O2 

O1 

Figure 5.5: Translating with 2 processors at various optimisation levels

for short programs that only run for 1-2 mins, the optimisation cost outweighs the benefits.

For e.g. in a parallel (2 processor) run of the bzip2 test workload, it took 73 seconds with -O

and 118 seconds with -O3. This speed imbalance can be reduced by using more processors

and lowering the translation threshold so that more instructions can be translated and

simulation spends more time in translated code. At figure 5.6, doing more optimisation

at a translation threshold of 1m shows little speed penalty with 4 processors. Also, with

multi-processing, the effort for function inlining in -O3 starts to pay off compared to O2.

Therefore, translating at higher optimisations appears to be useful for future platforms

with more cores/CPUs.

More results on tuning the translation threshold are discussed in section 5.5.1.

5.3.2 Results on Idle-Time optimisation

Although re-optimisation promises to bestow a trade-off between similar translation over-

head for short programs and better performance for longer running programs, a more

counter-intuitive outcome is observed. Figure 5.7 shows the average potential gain in per-

formance by executing re-optimised code at -O3 with respect to the total amount of code

translated.

39

82.02 

61.59 

46.15 

41.36 

91.28 

67.91 

49.75 

41.88 

99.98 

67.9 

49.64 

41.74 

1‐processor 

2‐processors 

3‐processors 

4‐processors 

0  20  40  60  80  100  120 

Seconds 

Bzip2 (Short) ‐ Optimisation Effects 

O3 

O2 

O1 

Figure 5.6: Effects of Optimisation on short runs after lowering translation threshold to
1m

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Bl
oc
k 
1 

Bl
oc
k 
2 

Bl
oc
k 
3 

Bl
oc
k 
4 

Bl
oc
k 
5 

Bl
oc
k 
6 

Bl
oc
k 
7 

Bl
oc
k 
8 

Bl
oc
k 
9 

Bl
oc
k 
10

 
Bl
oc
k 
11

 
Bl
oc
k 
12

 
Bl
oc
k 
13

 
Bl
oc
k 
14

 

U
sa
ge
 %
 o
f c
ac
he

d 
co
de

 

Usage Ratio of Normal/Optimised Blocks 

O3 

O 

Figure 5.7: Expected gain from Idle-time Re-optimisation

The graph pictured is just a rough guide but reflects possible gain by spending 50%

of its time executing in re-optimised code (although it depends on how much code is re-

optimised on the whole). Consider an example where the bzip2 benchmark in figure 5.5

is ran this way. Observe that there was only a 7.11% of gain from the benchmark where

99% of the code is executed from the cached code optimised at the beginning with -O3.

Therefore, if 50% of the time is spent executing reoptimised code. There will be about

40

3.56% improvement in performance. So in practice, it should provide slightly better per-

formance for longer programs and similar performance (compared to default settings) for

short programs; this is also largely dependent on the time-slot where the re-optimisation

is performed.

Unfortunately, implementation is more challenging than anticipated. The modified

code is unusable as a re-optimised block is often reloaded at the same time it is called

by the main simulator thread. To solve this race-condition, the obvious solution seems

to use a mutex lock on pointers to the DLL. Unfortunately, locking the pointer with a

mutex results in slower performance as the mutex has to be locked and unlocked for each

execution of a cached block.

Further study is needed to examine safe ways of reloading a DLL (possibly) in use

before the trade-off can have a chance at being realised.

5.3.3 Results on Block-Stitching

In a short benchmark (429.mcf) that ran for 27 seconds, the amount of switches from inter-

pretive to compiled simulation exceeded a million. These additional instructions executed

per mode switch to do call-setup, link-up and clean up on the host machine’s stack to call

the translated C++ functions add significant overhead.

Therefore, block stitching could provide potential improvement to overall simulation

speed. As larger blocks are being translated, more scope is available for optimisations by

the compiler. Basic blocks spanning 2 blocks can also be quickly executed. The simulator

would be doing less jump returns to the main execution loop before going to the next

cached block.

SimIt-ARM is designed to align blocks at 2KB boundaries so it could not run many

benchmarks properly with a block size of 210. For one benchmark (445.gobmk) that worked

the benefits are shown in table 5.2:

It shows that if permitted to run with larger block sizes, performance would potentially

be better. However, the translation delay is also increased as it takes more time to compile

a block twice as big.

41

Configuration Performance (s) α Delay
512 word 6.73 3.82
1024 word 8.52 4.79s

512 word (persistent) 3.80 n/a
1024 word (persistent) 3.66 n/a

Table 5.2: Block stitching effects on first and subsequent runs

Since an optimisation level of -O3 inlines functions at our overwritten -finline-limit=5000,

the translated function fits into the compiler inlining heuristic’s overwritten prescribed

limit.

5.4 Results of Locality

There are two experiments done to improve the locality of translations; namely the use

of a RAM disk and the use of Code-Images. Only the former has results. The other one

did not produce runnable code for the simulator. This section describes the outcomes and

problems.

5.4.1 Producing Object Code images

In section 5.4.2, the aim is to replace the DLL caching scheme with a direct dynamic code

generation method into SimIt-ARM; in the hope that changing the part that creates the

DLL and the part that loads the DLL would remove the overhead of loading and creating

DLLs hence decreasing the overhead of translation and improving performance.

Shown in figure 5.8 is a program that as a start creates the equivalent of a simple

function in the x86 architecture that returns an integer value 42. It is a simple example on

trying to generate assembly, store it in an image, then load and run it. The same principle

is used to translate ARM target instructions and generate the equivalent x86 machine code

at runtime and execute it. Figure 5.9 shows how the code image in figure 5.8 is created

and stored in a .bin file.

42

int func(void) { return 42; }

x86 assembly:

--

00000000 <_func>:

0: 55 push %ebp

1: 89 e5 mov %esp,%ebp

3: b8 2a 00 00 00 mov $0x2a,%eax

8: 5d pop %ebp

9: c3 ret

Figure 5.8: Simple function that returns an integer

A code example to use the image created in figure 5.9 is shown in Figure 6 at the

appendix. The program works fine without linking and resolving symbols by relocation.

However, for the complex, tightly coupled nature of the translated functions in SimIt-ARM,

it is not a straightforward task to resolve the symbols programatically. Doing so would just

be the same as doing dynamic linking, hence the introduction of DLLs or shared libraries.

By just running the function in pure object file format, a segmentation fault occurs.

1) od -Ad -x 42.o | less

outputs:

...

0000048 0009 0006 8955 b8e5 002a 0000 c35d 0000

...

2) cat 42.o | head -c 62 | tail -c 10 | od -Ad -x | less

outputs:

0000000 8955 b8e5 002a 0000 c35d

0000010

3)cat 42.o | head -c 62 | tail -c 10 > image.bin

Figure 5.9: Simple function image that returns an integer

43

5.4.2 Results of using a RAM-Disk

Usually RAM-Disks are made available on various Linux or Unix based machines to keep

temporary files and variables. An effort has been made to use it to reduce the overhead of

file I/O.

43.611 

40.8434 

40.666 

40.299 

44.08 

40.8159 

40.841 

40.097 

38  40  42  44  46 

1‐proc 

2‐proc 

3‐proc 

4‐proc 

Seconds ‐ Average over 10 runs (less is better) 

429.mcf: RAM‐Disk vs HDD 

HDD 

RAM Disk 

Figure 5.10: Use of a RAM-Disk

As shown in figure 5.10, the results show no difference in the speed of the simulation.

The counter-intuitive observation is basically based on the fact that most Unix/Linux sys-

tems (or even most Windows systems) have a buffer cache that does a write-back to the

disk at idle periods. A Write-back is more efficient than write-through (which immediately

writes to the destination disk). On the other hand, using a RAM-DIsk is also more prone

to errors. For instance, if the machine crashes, or the power is cut at a bad moment, or the

floppy is removed from the disk drive before the data in the cache waiting to be written

gets written, the changes in the cache are usually lost.

This is also the main reason why the power should not be abruptly switched off without

using a proper shutdown procedure, or remove a floppy disk from the disk drive until it

has been unmounted. These systems of file-buffering reduces the read/write times to disk

for many situations that are not limited to just these examples:

• Results from a Relational Database Management System (RDBMS)

44

• Files on a Dynamic Servlet/CGI form in a Web Server

• Running a program just compiled from source, e.g. a program for a programming

assignment

• Freshly downloaded files or executables

Hence the phenomenon occurs in the case of producing a C++ function that is im-

mediately linked to the simulator engine after compilation. The buffer cache is also auto-

matically managed by the operating system. Neither intervention is required nor special

settings are needed to use it. Furthermore, the size of the buffer cache is typically the

remaining amount of main memory on the system. The size of the buffer cache is auto-

matically reduced when processes need more memory.

Before the project started, it is feared that many multi-core PCs today have 2-4 cores on

chip but only 1 hard-disk. Hence the write/reads to the DLL will be serialised. Fortunately

there is the file-buffer cache and it is Concurrently accessible so further speedups in parallel

are actually possible.

5.5 Results on doing less interpretation

On the whole, the interpretative simulation runs more than 4.5 times slower running cached

code in compiled simulation. Table 5.3 shows the MIPS observed for Interpretive and

cached code on all benchmarks ran. This section shows the results of spending as little

time as possible in interpretive mode.

Simulation Mode Average Speed (MIPS)
Interpretive 52.3
Persistent-Cached 238.16

Table 5.3: Magnitude of improvements in Persistent caching vs. total interpretive simula-
tion

5.5.1 Reducing Translation Threshold

Reducing the translation threshold means increasing the number of instructions in the

program that will be selected for translation. This has the effect on performance and

45

utilisation. Overall chip multiprocessing benefits from lower threshold values along with

better optimisation levels. In the original paper [10], a value of 1m to 2m as the threshold

is the best for 4-6 processors on a cluster; similarly, for a chip-multiprocessor with 4 cores,

it is indeed no different. Figures 7-14 in the appendix show the results of the translation

threshold experiments. The reader is encouraged to compare the results against the spec-

ulative translation results in figure 5.11.

The 445.gobmk benchmark executed normally but thrashes at the end of the run at a

translation threshold of 1m. Therefore, its results for 1m thresholds were omitted. Trans-

lation thresholds below 1m also causes more thrashing 1 upon finishing the run in some

other benchmark programs. While it is running, more time is spent translating and lower

emulation performance is obtained.

Despite that, results still produce the fact that if the threshold value is too low (i.e. at

1m), it increases α and will affect emulation speed on shorter programs being simulated

with higher optimisation levels, involves many cached blocks and use fewer processors.

Lowering translation threshold and increasing the optimisation levels suits machines

with more processor cores on chip. This is because there is more compilation and optimi-

sation work can be done in parallel, thereby increasing simulation performance. Lowering

the translation threshold brings the values much closer to the ’modest speculative transla-

tion’ technique (cross refer to figure 5.11).

5.5.2 Results of speculative translation

This section presents the results of mocking up an ideal-case prediction strategy, i.e. one

that takes a negligible time to execute in parallel and detects with 100% accuracy the most

frequently executed blocks.

1The thrashing phenomenon is totally unexpected as the ARM target instruction block sizes are aligned
at a fixed boundary. At a threshold of 1 (in other words, translate all executed code), the target program
thrashed, froze and the amount of blocks translated is continuing to grow far beyond the size of the target
program. The original paper did not report similar issues with threshold values of 1m. That can mean a
defect in the simulator that requires careful examination of the block to physical-page interaction. SimIt-
ARM uses a 512-word code region scheme from by [19], which in the author’s opinion is not suitable to be
used dynamically since code is often mixed with data in physical memory. This could also be the reason
why SimIt-ARM can only execute statically linked programs. The issue still requires further investigation.

46

1406.97 

1341.17 

1442.98 

3223.80 

11905.80 

1377.73 

1290.41 

1371.06 

3275.60 

11903.19 

1342.22 

1155.88 

1244.92 

3031.69 

10470.38 

0  5000  10000  15000 

astar 

bzip2 

gobmk 

h264 

sjeng 

Speed in Seconds ‐ 2 Processors (Less is better) 

Speculative Translation 

Predict + ‐O3 

Prediction 

Original 

Figure 5.11: Potential benefits of speculative translation

Speculative translation on the whole usually gives a significant improvement in simu-

lation performance. The only exception is the h264 benchmark. This is due to the video

encoder’s poor locality. Each block of code takes a long time to be executed 16m times.

There are blocks which are slightly less frequently executed being hit more times before a

particular block is executed 16 million times. In short, the working set of the h264 program

is large as there are many frames in flight.

Hence, when the translation heuristic is conservative in its selection of blocks, the

performance is affected. The default 16 million threshold is used to mock up a cautious

speculation heuristic (refer to section 4.5.1 on how mocking up is done) and figure 5.11

shows the general results of doing the cautious prediction strategy. For the case of h264,

when a more generous predictive heuristic (mocked up using a 1m threshold) is used, the

number of blocks identified increases only by 15%, but the ordering of blocks changed

47

dramatically. Upon reducing the translation threshold to mock-up the heuristic, the per-

formance is thence improved.

Opt. Level 1m - Threshold 1m - Speculative
-O 3329.31s 3275.6s
-O3 3076.35s 3079.79s

Table 5.4: Results of H264 on 2-cores with generous speculative or low threshold modes

The other way to prevent code usage ordering anomalies is to optimise the translated

code. Shown in figure 5.11, using optimisations on the same conservative heuristic im-

proves performance of the h264 video encoding benchmark.

Another interesting observation in table 5.4 that generous speculative prediction on the

h264 benchmark do not perform better than just lowering the threshold. This is due to

the fact that less urgent code that has to be translated is given an unfairly more attention

compared to code that is really frequently used. It would be, as a interesting further study,

examine the generous heuristic on more benchmarks.

Optimisations on a speculative heuristic

For all benchmarks, a speculative heuristic benefits from the use of higher optimisations.

This is due to the fact that spare processors handle the work in parallel and more time is

spent in executing optimised code.

However, when the generosity of the heuristic is increased with the optimisation levels.

It does not necessarily improve the performance. This is demonstrated again in the h264

benchmark (see table 5.4) as truly hot-code is not given the necessary attention to be

translated first, causing a slight performance penalty from missed opportunity cost.

Importance of ordering in speculative translation

When a heuristic is mocked up as mentioned in section 4.5.1, blocks are pushed onto the

queue according to the order in when they are cached. When ordered using the block’s

location in the virtual address space, the performance may not be ideal. Hence, when

48

designing such a real predictive heuristic, it is important to do some profiling. An example

of such a possible profiling heuristic is seen in [17].

5.6 Other Experiments

Some miscellaneous experiment results useful to product engineers are highlighted below.

5.6.1 Persistent Caching

Persistence caching is a useful feature for product engineers or software programmers writ-

ing the system software for a new platform. As code can sometimes be altered during

debug cycles, it is useful not to flush the cache as only some pieces of code have been

changed or added.

In the following use cases on the test workload of the SPEC INT combinatorial opti-

misation (429.mcf) benchmark, SimIt-ARM performed the following:

Code Position Changed Block Invalidations
Start changed 1 block
Middle changed 2 blocks
End changed whole program

Table 5.5: Persistent caching and its effects on small changes on code debug cycles

Sometimes, changes to code involves adding more code, hence the effects of adding

more code on the persistent caching mechanism is also tested. Table 5.6 shows the effects:

Code Position Added Block Invalidations
Start changed all
Middle changed 1
End changed 1

Table 5.6: Persistent caching and its effects on adding code in debug cycles

Note that in 5.6 changing code in the middle of the program can invalidate more than

49

1 block of translated code in the cache. This depends on the number of instructions

previously in the modified block (a block usually has < 512 instructions in it).

5.6.2 Persistent Caching benefits

The current implementation of Dynamic compiled simulation and persistent caching at the

disk level demonstrates the capability of reducing more translations happening in short

debug cycles. As code is being reused for more than one run of the program. Persistent

caching makes it even more worthwhile to do more optimisations as part of the overhead

of translation from target instructions to a programming language.

50

5.6.3 System Level Emulation

A compressed ARM-Linux zImage is booted up using SimIt-ARM to briefly test system

level emulation performance. All tests are performed on 1m threshold, 1-4 processor cores

and varying optimisation levels.

20.29 

14.36 

13.74 

13.42 

22.98 

16.88 

13.96 

14.07 

23.44 

16.49 

13.2 

13.17 

0  5  10  15  20  25 

1 Processor 

2 Processor 

3 Processor 

4 Processor 

Seconds ‐ Less is Better 

ARM Linux Boot up ‐ 1m Threshold 

O3 

O2 

O1 

Chip-multiprocessing benefits system level simulation just as user-level simulation did.

It is also worth doing more optimisations when multiprocessing systems when more than

2 processing cores are used. The overall user keyboard response on using the shell in the

bash ARM Linux terminal is also faster with multi-processing as the bash shell code is

being translated in parallel at boot time.

51

Chapter 6

Conclusion and Future Work

Parallel Instruction-Set Simulation is a very new technique to improve emulation perfor-

mance. There is a lot of work left to be done. This section briefly summarises some possible

future research work related to parallel ISS process improvement and the main findings of

this project.

6.1 Investigate more optimisation engines and Passes

Not all possibilities for tuning the simulator are used. Using a compiler as a translation

tool opens up many possibilities for tuning to specific architectures. In fact, GCC can

with the help of the -mtune and -march option to tune the translations using architecture

specific instructions i.e. SSE2 for Pentium 4 processors during the instruction selection

phase to improve simulation performance. There are also options for register allocation

optimisation that had to be flagged at compile time normally. Examples of such an option

is the -fira-algorithm=algorithm where the argument algorithm can be priority or

CB. These tune the register allocations using the Chow’s Priority colouring and the Chaitin-

Briggs’ colouring algorithms respectively.

It is also possible to further investigate LLVM as a compiler infrastructure [12] to ex-

periment advanced optimisation passes. It offers optimisations at all stages of a program,

namely at compilation or AST and SSA states, machine language stage (where LLVM

comments are used to track possible profile guided optimisation opportunities) and offline

reoptimisation.

52

According to the authors of the compiler infrastructure, LLVM offers a significantly bet-

ter code quality and optimisation performance when compared to the standard gcc/g++.

As compilation and translation work is distributed to slave processors/threads, a lot more

optimisation can be done in the background.

At the moment, LLVM is unable to be used by SimIt-ARM due to a front-end issue that

conflicts between the use of C99 extern inline function libaries. More time is needed to

resolve this issue as it potentially could have used up too much of this project’s time.

6.2 Proactive Compilation strategies

Before work can begin on a speculative compilation heuristic, further study must be done

on the tolerance of mis-predictions such as with a very generous heuristic. The experiment

on h264 in section 5.5.2 with a generous speculation can be expanded to all benchmarks to

see if it is really worth doing such a heuristic. Nevertheless, such a proactive strategy still

has to rely on some dynamic profiling of the target code to be able to accurately detect

hot-code. Alternatively, it is also possible to use a dynamic threshold for individual blocks

of code instead of using a general threshold value for all blocks of instructions. Growth

rates of block hits can be analysed for faster detection of hot-code.

6.2.1 Incorporating the Block Graph analysis

As one possible way to construct a proactive heuristic, a target executable can be viewed

as a graph of code blocks. Each block has several jumps, conditional and unconditional

branches to other blocks in the program. To predict which block will be hottest (i.e. most

frequently executed), the following policies or hypotheses can be formulated:

• Hot blocks are often the targets of jumps/branches from other blocks

• Hot blocks also have many backward jumps due to nested loops and if statements

With this, the slave threads can begin analysing the program after being loaded into

memory. The algorithm looks out for the characteristics mentioned above in the program,

marks the location and translates them immediately. After translating a block, it continues

analysing from the saved location. The memory space of the program is divided equally

among processors so that threads can work with mutual exclusion. As mentioned in Section

5.2 OpenMP might be tried out on this coarse grained approach to parallel simulation.

53

6.3 Using Linked Basic blocks

Instead of translating blocks of memory, it would be more efficient, comprehensible and

stable to implement and translate at the basic block level. These basic blocks can be

stitched to form the cache in one shared library. This will probably improve the efficiency

of translation as the actual amount code that is actually translated may not be that much.

It will also be possible to do basic block level persistent caching that is flexible and do not

invalid that many parts of the cache when code is changed or added. Compiling a long

stringed basic block of instructions will not only be more efficient but will also give the

compiler more scope for optimisation.

The basic block level of translation can also use branch prediction techniques (as op-

posed to profiling techniques) to accurately translate code before they are executed. Accu-

rate branch prediction techniques are prevalent in the literature for JIT compilers, language

translators and modern processor pipelining mechanisms. They should be fairly effective

and easier to design.

A similar concept of this paradigm is demonstrated by Daniel et. al. [14]. The EHS

JIT simulator uses a design strikingly similar to SimIt-ARM but caches at the basic block

level and stitches them to form Strongly Connected Components (SCC), Control Flow

Graphs (CFGs) and pages. In this way, it can benefit from higher levels of optimisation

and achieve just the correct amount of translations needed. Doing this type of translation

in parallel is one of the future work as well.

6.4 Summary of Findings

Chip-based Multi-processing offers significant improvements and convenience for the

average product engineer working on consumer grade multi-core PCs. Translation time is

high in the compiled simulation strategies but it also provides the balance between porta-

bility and target-adaptibility. Hence, being able to do the decoding and compilation in

parallel improves simulation performance and makes compiled simulation techniques more

popular than before for product engineer users. This is because more processing cores can

provide the additional processing power to translate and cache more target code as well as

perform more code optimisation in parallel.

54

Translating at high optimisation levels generally yields better results as there is

usually much more time spent in running compiled code. To improve the performance of

shorter running programs, it is better to use more CPUs to help in doing the translation

and optimisation. Larger blocks of translation units are more likely to benefit from com-

piler’s optimisations. Therefore future work also has to focus on creating larger translation

units for optimisation.

At best, a prediction strategy should make significant improvements in simulation

speed. However, good prediction techniques are not easy to design and might not be much

better than just lowering the threshold, increasing the number of compute nodes and do

more optimisation. More work is needed to investigate this possibility.

Threading schemes that provide fine threading control are currently better for multi-

processing simulators. More work can investigate the use of coarse grained program profil-

ing techniques to translate target code so that simple threading models like OpenMP can

be used to its potential.

55

Appendices

56

while (running)

{

unsigned ind;

unsigned pblk; // physical address index

//threads sleep in the below function if the queue is empty

get_block_to_compile(&ind, &pblk);

/*

if its an existing DLL and the thread is idle for more than

<idle_thres> amount of time, optimise the cache

*/

if(cache[pblk].dll_pointer && idle_interval > idle_thres)

{

char filename[1024];

char funname[1024];

sprintf(filename, "%s/libXcompiled_%u.so", cache_dir, ind);

//DLL’s function name

sprintf(funname, "compiled_%u", ind);

reoptimise_dll(ind);

void* handle = dlopen(filename, RTLD_LAZY);

fptr tt = (fptr) dlsym(handle, funname);

while(pblk == curr_blk)

continue;

cache[pblk].dll_pointer = tt;

}

else //its a newly identified block

{

compile_block(buf, ind))

update_dll_dict(ind, crc);

load_lib(pblk, ind));

}

}

Figure 1: Partial code body of thread doing idle-time reoptimisation

57

while (running)

{

unsigned ind; // DLL number

unsigned pblk; // physical address index

get_block_to_compile(&ind, &pblk);

if (!running) pthread_exit(NULL);

mem->read_block(buf, pblk << shiftval, bufsize);

unsigned crc;

unsigned dres = lookup_dict(buf, &crc);

//if dictionary has existing translated code, load it

if (dres != -1u) load_lib(pblk, dres);

else if (compile_block(buf, ind))

{

pthread_mutex_lock(&srv_mut);

update_dll_dict(ind, crc);

pthread_mutex_unlock(&srv_mut);

load_lib(pblk, ind);

}

}

Figure 2: Pthread version of slave thread body

58

while (running)

{

unsigned ind; // DLL number

unsigned pblk; // physical address index

bool has_a_block=false;//is there a block to compile?

has_a_block = get_block_to_compile(&ind, &pblk);

if (!running) break;

if(has_a_block)

{

if (!running) pthread_exit(NULL);

mem->read_block(buf, pblk << shiftval, bufsize);

unsigned crc;

unsigned dres = lookup_dict(buf, &crc);

//if dictionary has existing translated code, load it

if (dres != -1u) load_lib(pblk, dres);

else if (compile_block(buf, ind))

{

omp_set_lock(&srv_mut);

update_dll_dict(ind, crc);

omp_unset_lock(&srv_mut);

load_lib(pblk, ind);

}

}

}

Figure 3: OpenMP version of slave thread body

59

void *PIworker(void *arg)

{

int i, myid;

double s, x, mypi;

myid = *(int *)arg;

s = 0.0;

for (i=myid+1; i<=n; i+=num_threads) {

x = (i-0.5)*d;

s += 4.0/(1.0+x*x);

}

mypi = d*s;

pi += mypi;

pthread_exit(0);

}

/***************** in main() *********************/

int i;

int *id;

n = atoi(argv[1]); num_threads = atoi(argv[2]);

d = 1.0/n;

pi = 0.0;

id = (int *) calloc(n,sizeof(int));

tid = (pthread_t *) calloc(num_threads, sizeof(pthread_t));

for (i=0; i<num_threads; i++) {

id[i] = i;

if(pthread_create(&tid[i], NULL, PIworker, (void *)&id[i])) {

exit(1);

}

}

for (i=0; i<num_threads; i++)

pthread_join(tid[i],NULL);

printf("pi=%.15f\n", pi);

Figure 4: Pthreads parallel Pi program

60

#define N 100000000

int main()

{

double t, pi=0.0, w;

long i;

w = 1.0/N;

#pragma omp parallel num_threads(2) private(t)

#pragma omp for reduction(+:pi)

for(i=0;i<N;i++)

{

t = (i + 0.5) * w;

pi = pi + 4.0/ (1.0 + t*t);

}

printf("pi is %f\n", pi*w);

}

Figure 5: OpenMP parallel Pi program

61

#include<stdio.h>

#include <sys/mman.h>

#include<sys/types.h>

#include<sys/stat.h>

#include<fcntl.h>

typedef int (*entry_func)(void);

void* alloc_code_buffer(int size, int fd){

return mmap(NULL,size,PROT_EXEC | PROT_READ, MAP_PRIVATE, fd ,0);

}

int main()

{

int fd = open("./image.bin",O_RDONLY);

void *funcptr = alloc_code_buffer(10,fd);

entry_func func = (entry_func) funcptr;

printf("Result is %d", func());

close(fd);

}

--

Output of above: "Result is 42"

Figure 6: Code that calls the function image

1596.33 

1435.75 

1383.92 

1381.15 

1460.01 

1413.99 

1382.75 

1374.83 

1437.15 

1406.97 

1399.04 

1403.56 

1200  1300  1400  1500  1600  1700 

1 Processor 

2 Processor 

3 Processor 

4 Processor 

Seconds ‐ Less is better 

473.astar ‐ GCC ‐O 

16m 

2m 

1m 

Figure 7: Varying translation thresholds on the 473.astar benchmark

62

1406.08 

1348.26 

1344.58 

1331.88 

1399.14 

1340.14 

1333.27 

1331.05 

1394.56 

1341.18 

1344.55 

1342.37 

1280 1300 1320 1340 1360 1380 1400 1420 

1 Processor 

2 Processor 

3 Processor 

4 Processor 

Seconds ‐ Less is Better 

401.bzip ‐ GCC ‐O 

16m 

2m 

1m 

Figure 8: Varying translation thresholds on the 401.bzip benchmark

1686.703 

1415.31 

1405.52 

1395.24 

1631.68 

1445.43 

1475.9 

1463.15 

0  500  1000  1500  2000 

1 Processor 

2 Processor 

3 Processor 

4 Processor 

Seconds ‐ Less is better 

445.gobmk ‐ GCC ‐O 

16m 

2m 

Figure 9: Varying translation thresholds on the 445.gobmk benchmark

63

3509.3 

3271.03 

3256.81 

3253.22 

3485.6 

3287.88 

3266.2 

3246.9 

3476.83 

3243.73 

3292.73 

3264.03 

3100  3200  3300  3400  3500  3600 

1 Processor 

2 Processor 

3 Processor 

4 Processor 

Seconds ‐ Less is better 

464.h264 ‐ GCC ‐ O 

16m 

2m 

1m 

Figure 10: Varying translation thresholds on the 464.h264 benchmark

1475.8 

1335.53 

1318.93 

1312.56 

1460.01 

1329.2 

1323.21 

1318.43 

1459.88 

1367.7 

1367.09 

1369.53 

1200  1250  1300  1350  1400  1450  1500 

1 Processor 

2 Processor 

3 Processor 

4 Processor 

Seconds ‐ Less is better 

473.astar ‐ GCC ‐O3 

16m 

2m 

1m 

Figure 11: Varying translation thresholds with -O3 on the 473.astar benchmark

64

1264.98 

1189.01 

1184.75 

1183.97 

1272.11 

1195.63 

1191.71 

1190.68 

1285.97 

1244.01 

1243.17 

1241.32 

1100  1150  1200  1250  1300 

1 Processor 

2 Processor 

3 Processor 

4 Processor 

Seconds ‐ Less is Better 

401.bzip ‐ GCC ‐O3 

16m 

2m 

1m 

Figure 12: Varying translation thresholds with -O3 on the 401.bzip benchmark

1629.44 

1245.33 

1242.23 

1235.59 

1553.52 

1349.69 

1347.14 

1339.67 

0  500  1000  1500  2000 

1 Processor 

2 Processor 

3 Processor 

4 Processor 

Seconds ‐ Less is Better 

445.gobmk ‐ GCC ‐O3 

16m 

2m 

Figure 13: Varying translation thresholds with -O3 on the 445.gobmk benchmark

65

3394.03 

3105.95 

3063.27 

3061.98 

3534.53 

3063.27 

3089.92 

3072.59 

3335.85 

3163.05 

3170.5 

3180.66 

2800  3000  3200  3400  3600 

1 Processor 

2 Processor 

3 Processor 

4 Processor 

Seconds ‐ Less is better 

464.h264 ‐ GCC ‐ O3 

16m 

2m 

1m 

Figure 14: Varying translation thresholds with -O3 on the 464.h264 benchmark

66

Bibliography

[1] M Probst; Dynamic Binary Translation;

UKUUG Linux Developers Conference, 2002.

[2] VMWare Inc.; http://www.vmware.com; VMWare.

[3] Bochs; http://bochs.sourceforge.net/.

[4] C Cifuentes, M Van Emmerik; UQBT: adaptable binary translation at low cost ; IEEE

Computer, Vol. 33, Issue 3, pp. 60-66.

[5] F Bellard, A Fast and Portable Dynamic Translator ; Proceedings of the USENIX An-

nual Technical Conference, 2005, usenix.org.

[6] R F Cmelik, D Keppel; Shade: A Fast Instruction Set Simulator for Execution Profiling ;

ACM SIGMETRICS Performance Evaluation Review, Vol. 22, Issue 1, pp. 128-137,

May 1994.

[7] E Witchel, M Rosenblum; Embra: fast and flexible machine simulation; ACM SIG-

METRICS Performance Evaluation Review, Vol. 24, Issue 1, pp. 68-79, May 1996.

[8] J Zhu, D Gajski; A retargetable, ultra-fast instruction set simulator ; Proceedings of the

Design Automation and Test Conference, Munich, Germany, Article No. 62, 1999.

[9] J Lee et. al; FaCSim: a fast and cycle-accurate architecture simulator for embedded

systems ; Proceedings of the ACM SIGPLAN-SIGBED conference on Languages, com-

pilers, and tools for embedded systems, pp 89-100, 2008.

[10] W Qin, J D Errico, X Zhu; A Multiprocessing Approach to Accelerate Retargetable and

Portable Dynamic-compiled Instruction-set Simulation; Proceedings of the 4th inter-

national conference on Hardware/software codesign and system synthesis, pp. 193-198,

2006.

67

[11] W Qin, S Rajagopalan, S Malik; A formal concurrency model based architecture de-

scription language for synthesis of software development tools ; Proceedings of the 2004

ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools for embedded

systems, pp 47-56, 2004.

[12] C Lattner, V Adve; LLVM: A Compilation Framework for Lifelong Program Analysis

& Transformation; Proceedings of the international symposium on Code generation

and optimization: feedback-directed and runtime optimization, Page 75, 2004.

[13] A Binstock; Choosing between OpenMP and Explicit Threading Methods ; In-

tel(R) Software Network, http://software.intel.com/en-us/articles/choosing-between-

openmp-and-explicit-threading-methods/.

[14] D Jones, N Topham; High Speed CPU Simulation Using LTU Dynamic Binary Trans-

lation; Proceedings of the 4th International Conference on High Performance Embedded

Architectures and Compilers, pp. 50-64, 2008.

[15] V Sagdeo, The complete Verilog Book ; Springer, page 372,1998.

[16] SPEC Corp. Standard Performance Evaluation Corporation,

http://www.spec.org/cpu2006/CINT2006/.

[17] E Duesterwald, Vansanth Bala; Software profiling for hot path prediction: less is more;

ACM SIGARCH Computer Architecture News, Vol. 28, Issue 5, pp. 202-211, December

2000.

[18] GNU Compiler Collection Online Documentation - Description of Optimisations,

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

[19] M Bartholomeu et. al; Optimizations for Compiled Simulation Using Instruction Type

Information; IEEE Proceedings of the 16th Symposium on Computer Architecture and

High Performance Computing, pp. 74 - 81, 2004.

68

	Acknowledgments
	Introduction
	Thesis Organisation
	Notations and terminology

	Literature Review
	Types of Simulation
	Cycle Accurate Simulation (CAS)
	Functional Instruction Set Simulation (ISS)

	Techniques for Designing Simulators
	Interpretive Simulation
	Binary Translation
	Static Binary Translation
	Dynamic Binary Translation

	Compiled Simulation
	Generating a Simulator

	SimIt-ARM-3.0 - A Multiprocessing ARM ISS
	Interpretive and Dynamic-compiled simulation
	System and User Level Simulation
	Translation Caching
	Persistent Caching
	Block Linking

	Floating Point Simulation
	Self-Modifying Code
	Multiprocessing
	Devices
	Debugger
	Simulation synthesizer with MADL

	Methodology
	Overview
	Investigating Parallel Programming Models
	POSIX Threads (Pthreads)
	OpenMP

	Improving Quality of Translated Code
	Stitching Translated Blocks
	Using Higher Optimisation Levels
	Idle-Time re-optimisation

	Improving Locality of Translations
	RAM Disks
	Producing Code Images

	Reducing Time Spent in Interpretation
	Speculative Translation
	Varying Translation Threshold

	Test Setup
	Metrics

	Results and Discussion
	Original Simulator Results
	Results on different threading models
	Results with optimising code quality
	Results on translating at higher Optimisations
	Results on Idle-Time optimisation
	Results on Block-Stitching

	Results of Locality
	Producing Object Code images
	Results of using a RAM-Disk

	Results on doing less interpretation
	Reducing Translation Threshold
	Results of speculative translation

	Other Experiments
	Persistent Caching
	Persistent Caching benefits
	System Level Emulation

	Conclusion and Future Work
	Investigate more optimisation engines and Passes
	Proactive Compilation strategies
	Incorporating the Block Graph analysis

	Using Linked Basic blocks
	Summary of Findings

	Appendices

