
University of Adelaide

VISUALIZING OPTIMIZER

By

NISARG PATEL - a1143747

Supervised By

Brad Alexander

A thesis submitted in partial fulfillment for the

degree of Master of Computer Science

in the

Department of Computer Science

June 2008

Declaration of Plagiarism

I, Nisarg Patel, declare that this thesis titled, ‘Visualizing Optimizer’ and the work pre-

sented in it are my own. Where I have consulted the published work of others, this is

always clearly attributed and any error in that is totally unintentional.

I have read University’s policies on plagiarism before submission of my work.

Signed:

Date:

i

“Seeing is Believing”

Abstract

Code optimizers transform code from one form to another more efficient one. Most

optimizers are quite complicated in their design, as a result their internal behavior is

always difficult to monitor and trace. This project is based around an optimizer, BMF

optimizer written in Stratego, which is simple in design, specifically designed to be easy

to debug, analyze and trace. Due to its small and simple transformation steps the number

of transformations is quite higher than other optimizers. This is a bottleneck in evolution

of optimizer, because high number of transformations creates obscurity. The main aim

of this project is to trace the execution, performance and intermediate transformed code.

For that, optimizer’s generated list of ASTs has to be converted it into X3D abstract

syntax and write pretty printer to create concrete syntax which can display the trace in

graphical manner. The aim of the project was to built a 3D model of trace which is, easy

to understand, easy to navigate and should help in future development of the optimizer.

Acknowledgements

This project would not have come to existence without support from many people.

First of all I sincerely thank my parents for their blessings and support. Throughout my

studies they have motivated and supported me in whatever way they could and whatever

way I wanted. They have been the real source of inspiration throughout my studies.

Without the help of my supervisor Brad Alexander, I might not have finished this project

so successfully. I would like to thank him for his valuable suggestions, observations, his

help in my silly to gigantic mistakes and help with writing. I am also grateful for his

patience and support throughout the project time.

I would like to thank my close friend Aruna for her every help which always seemed liked

a little drop but now collectively have become an ocean.

Last but not the least, I would like to thank all who have directly or indirectly helped,

inspired or supported me for this work.

iv

Contents

Declaration of Plagiarism i

Abstract iii

Acknowledgements iv

List of Figures vi

1 Introduction 1

2 Stratego And Existing Optimizer 3

2.1 Rules . 4

2.2 Strategies . 5

2.3 Pretty Printing . 6

2.4 Optimizer And Optimization Process . 6

3 Problem And Possible Solutions 8

3.1 Problem . 8

3.2 Possible Solution . 10

4 X3D 11

4.1 Why Not Others? . 11

4.1.1 Adobe Flash . 11

4.1.2 POVRAY . 12

4.1.3 Blender And 3Ds Max . 12

4.1.4 3D PDF . 12

4.1.5 SketchUp . 12

4.2 What Is X3D . 13

4.3 Advantages Of X3D . 13

4.4 X3D Profiles . 14

4.5 X3D File Structure . 15

4.5.1 File Header . 15

4.5.2 File Body . 17

4.6 X3D Nodes . 18

v

Contents vi

4.7 Animation . 19

4.8 Sensor . 19

4.9 Scripts . 20

5 Preliminary Experiments 23

5.1 Ability To Draw Tree . 24

5.2 Animation . 25

5.3 Button Capability In X3D . 27

5.4 Scripting For User Interactivity . 28

6 3D Model Generation 31

6.1 Generate List Of ASTs . 32

6.2 Adding Performance Data . 32

6.3 Generating X3D’s Syntax Definition . 33

6.3.1 Knowing X3D Syntax . 33

6.3.2 Generating X3D Syntax . 37

6.4 From AST To X3D Abstract Syntax . 39

6.4.1 Generating Viewpoints . 39

6.4.2 Removing Quotes . 40

6.4.3 Getting Indentation For Tree . 43

6.4.4 Printing Text . 43

6.4.5 Putting All Nodes Together To Form A Tree 44

6.4.6 Putting The Tree In A Group . 45

6.4.7 Putting Trees At Proper Location In Scene 46

6.4.8 Gathering All Trees . 47

6.5 Generation of Final X3D File (Pretty Printing) 48

6.5.1 Printing File Header . 48

6.5.2 Printing Viewpoints . 49

6.5.3 Adding Text . 50

6.5.4 Adding Buttons . 51

6.5.5 Adding Script And Route Information 52

7 Results 54

7.1 Printing Just Text . 55

7.2 Printing Text In Tree Format . 56

7.3 Adding Buttons . 57

7.4 Adding Scripts . 58

7.5 Adding Performance Data . 59

7.6 Full Result . 60

7.7 Some Facts . 62

8 Future Work 63

9 Conclusion 64

Contents vii

A X3D Syntax File 65

B X3D Signature File 67

C Syntax Example For Single Tree 69

D Abstract Syntax File Example 74

E Pretty Printing File 75

Bibliography 83

List of Figures

2.1 Conversion From Code To AST . 3

2.2 Conversion From AST To Code . 4

2.3 Program Transformation Example . 7

4.1 X3D Profiles . 14

4.2 X3D File Structure . 16

5.1 X3D Experiment Outline . 23

5.2 Initial Tree Form . 24

5.3 Final Tree Form . 25

5.4 X3D Animation Example 1 . 26

5.5 X3D Animation Example 2 . 26

5.6 X3D Button Capability . 27

5.7 Example File Of Functional Script . 28

5.8 Example File Of Simple Script . 29

6.1 Milestones To Generate Final 3D Model 31

6.2 Created First Graphics File To Know X3D Syntax 34

6.3 Created Second Graphics File To Know X3D Syntax 34

6.4 Text Before Removing Extra Quotes . 41

6.5 Text After Removing Extra Quotes . 42

7.1 Result - Printing Text In X3D . 55

7.2 Result - Tree Format In X3D . 56

7.3 Result - Buttons In X3D . 57

7.4 Result - Scripts In X3D . 58

7.5 Result - Performance Data In X3D . 59

7.6 Full Result . 60

7.7 Full Result In Different View . 60

7.8 Result In Flattened View . 61

7.9 Facts . 62

viii

Chapter 1

Introduction

Compiler optimization techniques are, as name suggests, embedded in compiler. Compil-

ers apply appropriate optimization techniques, as it goes on compiling the given code, to

increase code’s performance. Because of this programmers do not have to worry about low

level optimization. As a result, compiler optimizers have to be on their best to increase

performance.

This project takes an existing BMF (Bird-Meertens Formalism) optimizer. BMF is a func-

tional programming model consisting purely of scalar and list functions and higher order

functions1 to glue them [7]. BMF allows one to take an initial program and transform it

into one that is computationally equivalent, but more efficient. This optimizer is written

in Stratego, which is a language for program transformation based on the paradigm of

programmable rewriting strategies [27]. It is a rule based optimizer which has set of rules.

While optimizing, a rule recognizes a sub term (part of code) to be transformed by pattern

matching and replaces that sub term with pattern instance. Most rules in the optimizer

simply rewrite from a source to target expression. These rules can be applied in various

ways or in various sequences, which can be controlled by programmable strategies. The

Stratego language and basic working of optimizer are explained in Chapter 2.

Many rules, of this optimizer’s rule set, perform very trivial and small task. This makes

the amount of change in every transformation very little and mainly localized but when

many of this small transformations come together, it creates global impact. Thus, it is

apparent that optimizer will have to make many local and small transformations in order

to optimize even a code with medium complexity. However, when the code is very large

1Higher order functions are those which take other BMF expressions as arguments and hence have
children in their parse tree.

1

Chapter 1. Introduction 2

and complex it takes hundreds to thousands of transformation, which makes tracking of

trace and performance difficult. Moreover, unless and until the performance of individual

rules and their internal behavior for all the transformations are checked and assed, it

is hard to validate and access the optimizer. In addition to that, for optimization, in

this optimizer, rules can be applied in very large number of possible permutation and

combination using different strategies. So it becomes difficult to compare that which

combination of rules give better performance, if there is no easy mechanism to compare.

This problem, along with the example, and its possible solutions are depicted in chapter

3.

One way to solve this problem is to ’see’ every transformation with as much of detail as

possible. We have solved this problem by displaying the initial code, final code and all

intermediate transformed code, in its abstract syntax tree format, in 3D environment.

We have also made it possible to navigate through the long list of transformed codes by

adding navigation functionality. To create this 3D model we have used X3D, which is an

XML based 3d graphics rendering tool. In chapter 4, X3D has been explained in detail,

as well as features of X3D and other possible graphics rendering tools are compared.

While selecting X3D as final choice we had to run some preliminary experiments by which

we came to know a lot about X3D. These experiments and their findings are explained

in chapter 5.

How we have approached the solution, what were the mile stones, what problems we have

faced, what are our findings, and other details are explained in chapter 6. The results of

project is shown in chapter7, while some future work is explained in chapter 8.

Chapter 2

Stratego And Existing Optimizer

As given in [1], Stratego is a language specifically designed for program transformation.

The language provides rewrite rules for the definition of basic transformations, and pro-

grammable strategies for building complex transformations that control the application

of rules. Complex program transformation can be achieved by number of consecutive

modifications in a given code.

Every program (i.e. an input sentence) is represented by terms called ATerms (Annoted

Terms). The ATerm format provides a set of constructs for representing trees, which may

be for example comparable to XML or abstract data types in functional programming

languages [8]. BMF optimizer is built upon Stratego. As shown in Figure 2.1, any given

program is converted into ATerm representation and from there it is converted into AST

format.

Figure 2.1: Conversion from code to AST format

3

Chapter 2. Stratego And Existing Optimizer 4

This AST is then used to transform the code. The transformation is explained in section

2.4. The transformed AST is then converted back into program from using pretty printer

as shown in Figure 2.2.

Figure 2.2: Conversion from AST format to code

The optimization process has been defined and implemented using Stratego. There are

important parts of Stratego language like rules and strategies, which are core of this

optimizer as well. Those are explained in sections 2.1 and 2.2. The working of optimizer

is explained in section 2.4.

2.1 Rules

As given in [2], the rules for rewriting describe how a part of code, matching certain

pattern, is transformed into another program piece. The general form of rewrite rule is:

L : p1 -> p2

Where, L is the name of the rule, p1 is the left-hand side pattern to be matched and

p2 the right-hand side term pattern to be written. Predefined rules in Stratego rule set

are simple, and if required user can define his own rules. Strategies (described in section

2.2) describes precisely how opportunities to apply rule, within a larger set of AST, are

searched for. For example:

Rule

E : Eq(X, False) -> Not(X)

Chapter 2. Stratego And Existing Optimizer 5

will transform the term

Eq(Atom("q"),False) into Not(Atom("q")),

because X has been bound with Atom(�q�).

2.2 Strategies

It is clear from above example that, a rule defines transformation, which is a heart of

optimization. As given in [18], most other systems embed rewriting rules in recursive

definition to traverse the AST. This embedding prevents the rewriting part of the trans-

formation from being reused in a different traversal strategy leading to much longer code.

Moreover, this method not sufficient for well program optimization. Because this may

lead the optimization process into non-terminating state if one rule is in inverse of the

other [3].

In addition to that, it is also possible that applying different rules in different sequence

may give different results. Thus to control that, rules should be applied strategically. To

solve this problem, strategies are used in Stratego, which combines one or more rules and

applies them in predefined traversal sequence throughout the tree. Strategies define how

rules are applied. Strategies make the rule look for left hand side pattern in given term

and when the match is found, it will rewrite/transform it to right hand side pattern. As

given in [2], a strategy definition has the form:

F = S

Where, F is name of the strategy and S is the strategy expression. Strategy expressions

can combine one or more transformations (rules and/or transformations) into a new

transformation.

For example, s1 <+ s2 tries to apply rule s1 first and if application of s1 fails then it tries

to apply rule s2. This strategy also helps when the rules are mutually exclusive, because

even if one rule fails the other can succeed.

Bottom-up traversal strategy makes it possible to traverse the whole tree starting from

bottom. In other words, it first visits the subterms of the subject term, recursively

transforming its subterms, and then tries to transform the subject term. This strategy is

defined as below.

Chapter 2. Stratego And Existing Optimizer 6

bottomup(s) = all(bottomup(s)); s

Now for example, strategy

bottomup(try(L)) applied to term T

will attempt to apply rule L to each node of the AST from bottom up. It is worth noting

that, this attempt will fail at most nodes in the tree, because the node does not match

the left hand side pattern of the rule.

2.3 Pretty Printing

We have used the ast2text tool to pretty print text [20]. This tool prints the abstract

syntax tree into plain text. The utility transforms an abstract syntax tree according to

formatting rules contained in pretty-print tables. The result of ast2text is an ASCII text

file. The tool is a convenience composition of ast2abox1 and abox2text2 tools. The pretty

printing format we have used in explained in section 6.5 as well as whole pretty printing

file is attached in appendix 4. In this tool -p option informs the pretty printer where the

formatting rules are stored. -i and -o informs the pretty printer from where to fetch input

file and where to store the output file respectively.

2.4 Optimizer And Optimization Process

BMF optimize creates an intermediate form to allow for easier optimization. The opti-

mizer is written in stratego. It consists of several small modules of very simple rewrite

rules that are repeatedly combined and applied to code using a small set of strategies

until the code reaches a form that we have previously seen.

It should be noted that, the main aim of the project is to create a 3D model of the long

trace. These traces are treated in the whole project as just a list of trees. What any

trace or program means is irrelevant to our problem. These programs and their trace

1ast2abox pretty prints an abstract syntax tree to the Box layout formalism. The result of ast2abox
is a Box term which describes the intended format.

2abox2text formats a Box term to plain text. The result of abox2text is plain text according to the
formatting defined in a Box

Chapter 2. Stratego And Existing Optimizer 7

can be understood by people involved in development of the optimizer. So there will be

minimum level of explanation of content like the optimizer code and stratego code. We

have put Stratego programs and their traces at few places to explain its complexity, to

give some background information, to manage consistency and for clearer understanding

of our work.

To illustrate optimization process, the program in format;

Program(BComp(BMap(BId),BMap(BId))),

will be converted into tree format and optimized, using bottom up traversal, as shown in

figure 2.3.

Figure 2.3: Program transformation example, showing various stages

Chapter 3

Problem And Possible Solutions

3.1 Problem

For tracing purpose the optimizer is able to provide some data. This data is merely a

text dump, which is hard to process and understand. The example program shown in

previous chapter,

Program(BComp(BMap(BId),BMap(BId))),

is one of the very trivial programs and still it takes 3 transformations to optimize the

code fully. Now the existing optimizer can give some data to trace the execution which

would be as follows.

Program(BTrace([BComp(BMap(BId),BMap(BId)),BComp(BId,BMap(BId)),

BComp(BId,BId),BId]))

This trace is just merely a text dump. It contains data but no information. But still it

is easy to fetch required information from above text dump then what is the problem?

For the simplest program like above, it takes 3 transformations to optimize. When the

code gets larger, the number of transformations increases exponentially. Because code’s

smaller parts need transformation, and combined transformed components needs further

transformation. This makes the understanding of trace more complicated.

For instance a little bit bigger code like shown below increases the number of transfor-

mations to 11.

8

Chapter 3. Problem And Possible Solutions 9

Program(BComp(BComp(BComp(BMap(BComp(BOp(BIndex),BAlltup([BAddr("2","1"),

BAddr("2","2")]))),BOp(BDistl)),BAlltup([BId,BComp(BOp(BIota),

BComp(BOp(BLength),BId))])),BId))

This code’s trace will be as follows:

Program(BTrace([BComp(BComp(BComp(BMap(BComp(BOp(BIndex),BAlltup([BAddr("2","1")

,BAddr("2","2")]))),BOp(BDistl)),BAlltup([BId,BComp(BOp(BIota),

BComp(BOp(BLength),BId))])),BId), ,BComp(BComp(BOp(BSelect),

BAlltup([BId,BComp(BOp(BIota),BOp(BLength))])),BId),BComp(BId,BId),BId]))

Now for instance if the code remains of the same size, but complexity increases, like the

code shown below, then it becomes more tough and number of transformations fly to 120.

Program(BComp(BComp(BComp(BMap(BComp(BComp(BComp(BMap(BComp(BOp(BPlus),

BAlltup([BAddr("2","2"),BCon(BInt("2"))]))),BOp(BDistl)),

BAlltup([BId,BAddr("2","2")])),BId)),BOp(BDistl)),BAlltup([BId,BId])),BId))

These codes are still basic ones. This shows that in this optimizer it’s not too tough

for number of transformations to fly in hundreds and in certain cases up to thousands.

This makes it impossible to trace the optimization process and thus the whole process

becomes obscure. This situation is not good for optimizer’s enhancement. If one can not

see which rules are not working well or giving adverse effect on performance, it’s hard to

manage them it’s even harder to manage the strategies, which handles these rules and as

a result whole process gets unmanageable. It is worth noting that still these rules can be

verified on smaller and individual basis but it is not sufficient.

The problem goes out of control when two different optimization processes on the same

code, using different strategies, has to be compared. Because one can not know at which

point one optimizer got ahead, in terms of performance, of the other or vice versa and

have to only rely on the end result.

Another case can be when two different versions of optimizers have to be compared for

performance. In that case many programs will have to be run in both version of optimizer

and every single rule has to be evaluated for performance. In that case it is definitely not

compared to sit with long list of trace and keep comparing it.

In simple words, the problem is with tracking every single transformation in optimization

process with as much detail as possible, which is simply must.

Chapter 3. Problem And Possible Solutions 10

3.2 Possible Solution

A solution to this might be to arrange the text dump produced by optimizer in appropriate

way so that it can show the desired information. E.g. in a spreadsheet nicely arrange data

which shows existing tree in text format, performance figure, name of applied rule, etc.

But this solution requires user to imagine how the program structure is. This becomes

complicated when programs, and thus their representing trees, are very large or complex.

In other words this solution is just nicely arranging the text dump.

There is another approach, which we have taken; to display all needed information graph-

ically. The whole code along with every transformation can be shown graphically in ab-

stract syntax tree format. In this solution, it can be made possible to navigate through

all the transformations. The performance data can be shown along with each and every

tree. This removes the need of imagining anything. Two different version of optimizer’s

performance can be compared easily. It can also be actually seen whether any rule have

broken the code or not.

Chapter 4

X3D

We had some requirements in mind on basis of which we wanted to choose the 3d modeling

tool. These requirements were as follows. A tool, including its viewer should be, if

possible, free, should have good 3d modeling capability so that 3d models should look

reasonably good, should provide animation so that 3d model should not be just an image

and it should provide user interactivity so that an interaction can be made with trace.

4.1 Why Not Others?

4.1.1 Adobe Flash

This tool is very famous for creating 3d animation, user interactive animation and internet

applications [10]. It can be smoothly used in mobile devices as well [9]. Its action script

provides very flexible programmable action event management. Although, flash’s action

scripts are not a standard, it can be generated using some free tools [12].

It’s one of the down side is that its official development tool, Flash CS3 Professional, is

not free (at the time of research its cost was USD 600+) [11]. Moreover, it is not an

open standard. So for full features its official development tool has to be used [13] and

cannot be generated from third party software [26]. Due to this disadvantage it could not

be created directly from a Stratego program and was not suitable for project. In simple

words, its action script can be generated from third party software but not the actual

drawing (tree in our case),which is animated using action script that has to be animated.

11

Chapter 4. X3D 12

4.1.2 POVRAY

POVRAY (Persistence of Vision Raytracer) is freeware for developing 3d graphics. It

uses programming language style to generate 3d model (little bit similar to X3D and C).

So models can be generated directly from Stratego program. Its rendering capability is

very good. It supports animation. But it’s down side is that it does not support user

interactivity [14]. Thus it cannot allow user to take control and go back and forth in

long drawing of ASTs. This can restrict user from skipping some transformation while

navigating through a 3D model of any long trace. This tool can generate time based

animation (like movies), but it is not user interaction. After generating few models in

this tool due to lack of interactivity it was not chosen.

4.1.3 Blender And 3Ds Max

These are well known applications to generate 3d models. They have very advance an-

imation features. They can create stunning 3d models. But, as given in [16] and [15],

they are not an open standard files, which can be created from any third party system.

This can prevent generating their code from Stratego program. Moreover, they does not

have user interactivity feature, which will prevent from interacting with trace.

4.1.4 3D PDF

This is a new tool created by Adobe. As given in [17], it can create 3d world which can

be exported in highly accessible pdf format. It provides user interactivity. It provides

animation. Its viewers are free. But again its development tool is not free and it is not

an open standard.

4.1.5 SketchUp

This is a tool from Google. It provides very good modeling. It does have ability to

animate the camera. Fully featured development tool is not free. The free tool is good

enough but not as good as the paid one. It is not an open standard [28]. It does not have

user interactivity. It can include/export in various file formats but then sketchup doesn’t

remain the 3d tool in question.

Chapter 4. X3D 13

4.2 What Is X3D

As given in [5], X3D, which stands for ”Extensible 3D”, is a new, still under development,

open standard for 3D content on the internet. It is not a language but a standard. It

is developed by Web3d consortium and is successor of famous Virtual Reality Modeling

Language (VRML). X3D is intended to replace/extend the existing VRML97 standard

to display 3D interactive graphics on the web. X3D is a file format specification with

requirements on how a file is to be displayed. It is an ISO standard for 3D graphics. X3D

is more flexible than its predecessors because its files are encoded in XML, which can be

extended.

X3D has modular architecture which allows layered profiles. Profiles are used for incre-

mental implementation of standard. As claimed in [4], these profiles can be arranged

at different layers and thus can share services or interchange data among them. For

instance a profile at higher layered can access all functionality, known as components,

which a lower layered profile may not be able to. E.g. sound functionality cannot be used

by any profile which is at lower level then immersive. This enables users to use/access

only required functionalities and can make the application lighter, smoother and faster.

These profiles can increase functionality for graphical world and can enhance interactivity

as well. More about profiles is explained in section 4.4.

From [5], the X3D architecture is divided in components as well. There are 28 basic

components defined. It is also possible to modify a profile by adding different desired

components. This also makes the application lighter as it does not need higher profile

just because of 2-3 components. In addition to that, new components can also be added

to launch new features, e.g. streaming.

4.3 Advantages Of X3D

Although X3D neither has plenty of books written on it nor has wide web based support or

explanation, we decided to use it due to its features. The main reason to use X3D is that

X3D can create sophisticated 3d model simply. It has got flexibility and accessibility. It

does not need licensed software to view and to create the graphics file [5]. X3D combines

both geometry and runtime behavior into a single XML file [19]. This XML files can be

created using purpose built X3D authoring tools (e.g. X3D edit), text editors (WordPad,

text wrangler) or exported from third party applications (Stratego program in our case).

Chapter 4. X3D 14

This was also very important feature to pick X3D. Some features of X3D like zoom in/out,

simple user interactivity, 3d modeling, and possibility to fly around in 3d world was also

considered important for this project and its future development (like interactive graph

display).

These created X3D files can be displayed in a native X3D browser, which are sometime

available for free, or a web browser that has an X3D plug-in. Moreover the component

based structure helps to download and play files faster over the web [4]. By specifying a

lower profile along with some extra needed components, can make profile compatible for

most browsers.

4.4 X3D Profiles

As stated earlier, X3D profiles provide incremental implementation of standard. As

given in [4] and [5], X3D has 4 basic profiles defined in it. Each profile is targeted

for functionality that is commonly used. Because of these profiles even X3D browsers

or web browsers can provide immediate support, rather than trying to implement big

specification at once. These profiles are shown in figure 4.1.

Figure 4.1: X3D profiles with example of type of ndes available at each profile

Interchange is the most basic profile, which helps to communicate between applications.

It supports very basic graphics features like texturing, geometry, basic lighting. This

profile makes it possible to simply draw basic 3d objects.

Chapter 4. X3D 15

The second basic profile is interactive. This helps to interact with the basic 3d envi-

ronment which was created by interchange profile. This provides timing facility and

additional lighting facilities like point light and sensor light. Additional to interchange

profile this profile provides various sensor nodes which help user to navigate and interact.

As claimed in [4], immersive is the most used profile. It provides full 3d graphics and user

interaction. It also provides some of the advance features like fog, collision of objects,

scripting and audio support. In our project we have used this profile because it fulfills the

requirement of scripting ability, touch sensor ability and ability to draw different shapes.

Full is the rarely used profile unless specifically needed. It includes all the defined nodes

in X3D. It includes NURBS1, H-Anim (Human animation), and geospatial components.

X3D have 2 additional profiles defined which also provide specific solution. MPEG-4

Interactive is a small footprint version of the Interactive profile designed for broadcast,

handheld devices and mobile phones. Another one is CDF (CAD Distillation Format),

which is in, as claimed in [6], development phase to enable translation of CAD data to

an open format for publishing and interactive media. These two profiles are still under

development.

4.5 X3D File Structure

X3D files use .x3d format for XML based encoding or .x3dv for classical VRML based

encoding. As given in [4], X3D uses scene graph technique for rendering and animation

purpose. This graph structure remains consistent in both types of encodings. The general

file structure is shown in figure 4.2. I have used our own created X3D file as an example,

to show these different sections.

4.5.1 File Header

X3D file header contains no graphical information. It just contains some basic X3D scene

setup information. The file header contains XML and X3D headers, profiles, optional

components and meta information. The first information is XML information which

identifies the file as XML encoded file. The XML encoding matches general XML header

requirement, starting with the <?xml?> declaration.

1 NURBS (non-uniform, rational B-spline) is a mathematical model commonly used in computer
graphics for generating and representing curves and surfaces.

Chapter 4. X3D 16

Figure 4.2: The basic X3D file structure

<?xml version="1.0" encoding="UTF-8"?>

As shown above, it also includes version number and encoding. X3D files use (universal

text format) UTF-8 encoding to support almost all electronic alphabets.

After that there is X3D header statement which identifies the XML file to be an X3D

file. As shown below, The Document Type Definition (DTD), which is indicated by

DOCTYPE statement. Those help to validate the correctness of .X3D file.

<!DOCTYPE X3D PUBLIC "http://www.web3d.org/specifications/x3d-3.1.dtd" "file:///www.web3d.org/TaskGroups/x3d/translation/x3d-3.1.dtd">

Following that there is a declaration of X3D’s version number (version 3.0 and 3.1 are

only allowed) profile used in model and an XML Schema reference. This part is also

important because as per profile’s declaration the components and features can be used.

An example is shown below. Importance of profile is explained in section 4.4.

Chapter 4. X3D 17

<X3D profile="Immersive" version="3.1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance"

xsd:noNamespaceSchemaLocation=

"http://www.web3d.org/specifications/x3d-3.1.xsd">

Following that there is optional filed to add extra components to previously declared

profile as well as to add meta information. Meta information is useful to provide copyright,

author, other information. As it uses name-value string pairs (name of the item and

corresponding content), it can contain mostly any kind of information. Meta data can be

very beneficial as a part of project because it can store the values of different optimizer

version number or trial run number etc. Its example is as follows:

<head>

<meta content="*enter FileName here*" name="title"/>

<meta content="*enter description here,

short-sentence summaries preferred*" name="description"/>

<meta content="*enter name of author here*" name="creator"/>

<!-- SIMILARLY OTHER INFORMATION -->

</head>

4.5.2 File Body

Following the header of X3D file its actual body comes starting with <Scene> tag. The

creation of a scene in X3D is done through the definition and organization of the scene

graph. As shown below, the scene graph is a hierarchical structure that is made up of

nodes. These nodes act as parents and children. The Scene node is the root node, and

is the parent node of any scene (3D model). The Scene node’s children define all of the

items in a scene and their attributes. The nodes define objects such as shapes, sensors,

scripts, transformations, lightings, groups, etc

<Scene>

<!--Scene graph nodes are added here -->

<DirectionalLight ambientIntensity="0" color="1 1 1" direction="0 0 -1"

global="true" intensity="1" on="true"/>

<Viewpoint centerOfRotation="0 0 0" orientation="0 0 0" position="0 0 10"/>

<Shape>

Chapter 4. X3D 18

...

</Shape>

</Scene>

In above example, directional light gives light in the scene with defined intensity, color and

direction. Viewpoint setups a camera location by giving center of rotation, orientation

and position. As .x3d files use XML encoding, all scenes must be well formed, which

includes properly opened, closed, single or double quoted attributes, singleton tags, etc.

Each node in the X3D body have one or more fields which store the require data for that

node. E.g. a cone node can have fields like solid, bottom radius, height, side, bottom, etc.

which looks like below. Shape nodes can also contain other information like, appearance,

material information, transparency, etc.

<Shape>

<Appearance>

<Material emissiveColor="0 1 0"/>

</Appearance>

<Cone DEF=’the-cone’ bottomRadius="3.5" height="1.5" solid="false"

bottom="false"/>

</Shape>

4.6 X3D Nodes

As given in [19], X3D have many different kinds of nodes to provide different kind of

functionality. Although they can be basically grouped as follows:

� Coordinate Nodes (like: Coordinate, Transform)

� Geometry Nodes (like: IndexedFaceSet, IndexedLineSet, IndexedPointSet)

� Grouping Nodes (like: Anchor, Group, Inline, Transform)

� Light Nodes (like: Directional Light)

� Material Nodes (like: Material)

� Shape Nodes (like: Different shapes)

Chapter 4. X3D 19

� Texture Nodes (like: Image textures, shininess)

� World Info Nodes (like: World Info)

4.7 Animation

Creating animation is possible in X3D. Different types of interpolators are used in X3D for

full animation. As given in [21], the X3D Interpolator nodes are designed for animation

between linear key frame values. Each of these nodes defines a piecewise-linear function,

f(t), on the interval (-infinity , infinity). The piecewise-linear function is defined by n

values of t, called key, and the n corresponding values of f(t), called keyValue. The keys

shall be monotonically non-decreasing.

For example, both values could appear as follows:

<ScalarInterpolator DEF="SphereAnimator"

key="0 0.5 1" keyValue="0 1 0"/>

If the time range in time sensor is 10 seconds then after 5 seconds set fraction value

will be 1, after 10 second it will be 0, and so on. These key values might be representing

anything, for instance, transparency of a sphere, location of the object, etc. More detailed

example is shown in section 5.2.

4.8 Sensor

Point device sensors are very important part of human interactive graphics. As given in

[23], in X3D pointing-device sensors detect user pointing events such as the user clicking

on a piece of geometry (i.e., TouchSensor). A pointing-device sensor is activated when the

user locates the pointing device over geometry that is influenced by that specific pointing-

device sensor. E.g. if a touch sensor is attached to a transform, then all objects within

that transform will be ready to take events in when pointing device is over the cone. It

is worth to note, that transparent geometry nodes are opaque, with respect to activation

of pointing-device sensors. Using this mechanism we can make any geometry to act like

a button and pass events to/from it. It enables X3D world to change dynamically in

response to user events given by sensors.

Chapter 4. X3D 20

There are 4 types of pointing device sensors in X3D, namely CylinderSensor, PlaneSensor,

SphereSensor, TouchSensor; out of which, we have used TouchSensor in our project. A

TouchSensor node tracks the location and state of the pointing device and detects when

the user points at geometry contained by the TouchSensor node’s parent group (Transform

in our case, because it contains shape). A TouchSensor node can be enabled or disabled

by sending it an enabled event with a value of TRUE or FALSE. If the TouchSensor node

is disabled, it does not track user input or send events. Touch sensor is always enabled

in our case. Example of a touch sensor can be shown as below:

<Transform translation="-5 -5 0">

<Shape>

<Appearance>

<Material diffuseColor="1 0.5 0" shininess="1"/>

</Appearance>

<Text string="BACK"/>

</Shape>

<TouchSensor DEF="touchBACK" description="to go to previous object"/>

</Transform>

In the above example, the touch sensor is attached to a transform which contains a shape

node. As we have added a touch sensor, the shape will react to different touch events

(like click, etc.) from pointing device.

4.9 Scripts

As explained in [22], script nodes are generally used to effect some change in X3D world.

The Script node is used to program some kind of behavior in a scene. Script nodes

typically:

� Signify a change or user action

� Can receive events from other nodes

� Can send/bypass the event to other node

� Can contain a program module that performs some computation

Chapter 4. X3D 21

� Can effect change somewhere else in the scene by sending events

Each Script node has associated programming language code, referenced by the url field,

that is executed to carry out the script node’s functionality. Sometimes, before a script

receives the first event it shall be initialized. Then script is able to receive and process

events that are sent to it. Each event that can be received shall be declared in the script

node using the following syntax:

inputOnly type name

Where, type can be any of the standard X3D types (like SFFloat, SFBoot, ets.). Name

is an identifier.

The Script node is able to generate events in response to the incoming events. Each event

that may be generated shall be declared in the Script node using the following syntax:

outputOnly type name

Scripts also have field information. This field contains very important information like

node’s type (e.g. SFBoolean, Float), node’s access type (e.g. input only) and what is the

name of the field. The fields are expressed by following syntax:

<field accessType=’outputOnly’ name=’value_changed’ type=’SFFloat’ />

An example of script is shown below:

<Script DEF="touchNextScript"url=""

javascript:
functiontouchNEXTIsActive(active)

{
 bindView2= TRUE;
 }""

vrmlscript:
 function touchNEXTIsActive(active)

{
 bindView2 = TRUE;
 }"">

<field accessType="inputOnly" name="touchNEXTIsActive" type="SFBool"/>

<field accessType="outputOnly" name="bindView2" type="SFBool"/>

</Script>

Chapter 4. X3D 22

In this script definition, we have used javascript and vrmlscript both. DEF is the unique

definition for this script. URL gives the location where function is stored, but in this

case we have used inline functions. In calls to these functions, it first activates the button

named touchNEXT, initializes the view named bindView2. Then field information is

given, which says that touchNext is inputOnly type object, means it can take events in

(like user inputs). While, the bindView2 is outputOnly type object, means that it can

produce the events out (like changing display).

There is one more way of defining scripts which is a functional approach. In this approach

field declaration remains the same, but it does not use inline functions, and functions are

explicitly defined. It has got different functions for different operations like, initialization,

to handle transition, to set value or to perform some other operation. The example is

shown below:

<Script DEF=’script’>

<field name=’planeSensor’ accessType=’inputOutput’ type=’SFNode’>

<PlaneSensor USE=’planeSensor’ />

</field>

<field accessType=’outputOnly’ name=’value_changed’ type=’SFFloat’ />

<![CDATA[javascript:

function initialize(){ }

function on_handle_translation() { }

function set_value() { }

]]>

</Script>

Chapter 5

Preliminary Experiments

While selecting X3D as a final choice, we did many different types of preliminary tests

on it. In addition to that, another reason to experiment was to know X3D better and

understand its features, capabilities and syntax in required depth. This was necessary

because we started drawing objects in X3D manually but, at the end we wanted to

automate the whole process of creating 3d model of optimizer trace. In this model we

want to draw the AST as nicely such that user can read it. After that we want to add

user interaction in the form of navigation functionality, such that user can go forward or

backward in the long list of ASTs. To do this we have to have some scripting mechanism to

manage the events generated by user. For this purpose we divided the whole experiments

phase into 4 sections shown in figure 5.1.

Figure 5.1: Outline of experiments on X3D

In figure, section shown in dotted line was not most important, but still we performed it.

All sections are explained below.

23

Chapter 5. Preliminary Experiments 24

5.1 Ability To Draw Tree

To begin with we tried drawing simple ASTs manually in X3D to check its capability and

how good can it display the graphics. So we created a very simple graphics file which

had AST drawn in it. In this process we found that X3D’s objects locations have to be

predefined and should be spoon fed. The tree structure is shown in figure 5.2.

Figure 5.2: Tree outlook defined earlier

But it turned out that this tree representation was not easy. Because as tree grows larger

it is difficult to not let strings over written unless and until total depth and width of tree,

including length of string, is known before hand. This hurdle could have been solved

using Stratego but might have taken exceptionally long time and main focus of project

might have digressed. To solve this problem we looked at professional packages like dotty

[25], which is a well known graph visualization tool to know how they have solved the

problem which may help us to find another way. But even in that tool it was impossible

to keep the shape of the tree consistent for given any type of input. Moreover it tries

to squeeze the tree into given size. This can lead to bigger change in look of a tree,

for smaller change in code. Moreover, in future if the tree is changed with more than

2 children of any node the solution adopted now should survive. These problems were

undesirable and so we started looking for other possible ways to represent the tree. At

the end we came up with the format as shown in figure 5.3.

Chapter 5. Preliminary Experiments 25

Figure 5.3: Tree Outlook Finalised

In this representation, any node’s children will go to its right hand side, with fixed

distance. This makes the left most node, the root node, and right most nodes on any

path the leaf nodes. In addition to that, this representation draws trees with depth-first

manner. This representation solves all the above stated problems if trees are drawn at

adequate distance.

5.2 Animation

During this testing phase, it was also tried whether an X3D file can be auto animated,

like a movie, or not. If animation could be easily, added then it was possible to navigate

the whole trace automatically, without user to click on buttons.

To try we created following model, in which both objects fade in and fade out at different

time interval. We tried this method to see how time based animation works in x3d? Is

it possible to move the trace around automatically? Is it possible to draw whole trace at

only one place, one after another?

After these examples we came to know that time based animation is possible in X3D.

But it was not chosen because the animation cannot be stopped/paused in between (if

user wants to have a closer look at AST), animation has to start at beginning and end

at the end of trace (if user is half way through and wants to start animation, he’ll have

to start from beginning), the total time has to be defined beforehand (total number of

transformations can vary).

Chapter 5. Preliminary Experiments 26

Figure 5.4: One stage of Animation

Figure 5.5: Second stage of Animation

Chapter 5. Preliminary Experiments 27

5.3 Button Capability In X3D

Just verifying the ability to draw the AST was not sufficient. As we decided not to have

animation, we decided to give the control to user and he can navigate around in 3d world.

For this requirement, user should be able to give commands to the 3d world and for that

button capability is must. Thus, it had to be checked whether it can include buttons? To

check that we created some sample files which had buttons. One of the created sample

file is shown in figure 5.6.

Figure 5.6: X3D button capability example

In this file both the objects are buttons which moves the world left and right. These

samples have shown us that implementing button in x3d is possible. Any object like

shape, text, figure, etc. can be used as button. To make these objects act as button, a

sensor has to be attached with them. This sensor can sense the pointing device operation

on it, and can react. The code used is as follows:

<Transform DEF="YellowBox" translation="5.0 0.0 0.0">

<Shape>

<Appearance>

<Material diffuseColor="1.0 1.0 0.0"/>

</Appearance>

<Box size="0.5 0.5 0.5" solid="true"/>

</Shape>

<TouchSensor DEF="touchBox"/>

Chapter 5. Preliminary Experiments 28

</Transform>

More about sensors is explained in section 4.8.

5.4 Scripting For User Interactivity

To achieve the required movement and some action, scripts are used widely. It was must

to check whether X3D can support scripting or not? And if it can then how well it can

be used for the project.

To check that we created a sample file in X3D, this had a slider in it. This slider can be

operated as any normal slider and user can control it. Its example is shown in figure 5.7.

Figure 5.7: Example to show user interactivity using functional scripts

To include the user interactive slider we used functional approach in it. In functional

approach, all field information is given in the beginning. Then there is a function which

initializes the data required for the script. Following that there are functions which can

set the values, handle the input value, etc.

By creating this file it was clear that X3D can take functions approach for scripting. This

functional approach is more advance then X3D’s inline scripting approach. It is also easy

to handle complex scripts and transitions in this approach.

After that we created an example, using simple script. The example is as shown in figure

5.8.

Chapter 5. Preliminary Experiments 29

Figure 5.8: Example to show user interactivity using simple script

In the example ”BACK” and ”NEXT” serves as buttons. By pressing ”NEXT” the whole

scene moves to the left and reveals next boxes, while by pressing ”BACK” button it moves

the scene on right and shows the previous boxes. Its code is as follows:

<Transform translation="-3 -5 0">

<Shape>

<Text string="BACK">

</Shape>

<TouchSensor DEF="BackButton"/>

</Transform>

<Transform translation="3 -5 0">

<Shape>

<Text string="NEXT">

</Shape>

<TouchSensor DEF="NextButton"/>

</Transform>

The script definition for the above problem is shown below, which can be easily understood

from the explanation in section 4.9.

<Script DEF="touchNextScript" url=""javascript:

function touchNEXTIsActive(active) {
 bindView2

= TRUE;
 }""vrmlscript:
 function

touchNEXTIsActive(active) {
 bindView2 = TRUE;
 }"">

Chapter 5. Preliminary Experiments 30

<field accessType="inputOnly" name="touchNEXTIsActive" type="SFBool"/>

<field accessType="outputOnly" name="bindView2" type="SFBool"/>

</Script>

Later after trying few other examples, it was revealed that, for this project, embedding

functional approach was more complicated than using simple scripting. Later, we decided

to go for the simple scripting.

In our problem every button (sensor node) and thus every script was slightly different

then each other because, they had to produce different output (move camera to different

location) for similar input (user click). Now, in X3D, scripts cannot take user input. So

the input and output of the functions used in scripts cannot be changed. So, different

outputs cannot be generated from single script. Because of that functional approach

loose its reusability. Furthermore, our problem does not require fancy scripts and so if we

would have implemented functional approach; it might have made the code unnecessarily

bigger as well as might have made the automatic generation of code difficult.

In addition to that, to make the automatic code generation as compact as possible, as

explained earlier we have made every tree and its navigation information local to each

particular AST. Because of this we had to create all the viewpoints earlier so that each

local script can access the global viewpoint and can make the camera move. Because of

these reasons we decided not to use the functional approach but to use the simple scripts.

And this is the same reason why we have 6 scripts attached with every AST.

Different examples have shown that user interactivity is again not easy in X3D but was

possible. It can be achieved in various ways. Just to name a few,

1. By making a text, shape, image or any object a button and then adding script to it

2. By moving the camera and keeping the world as it is

3. By moving the object and keeping remaining world at its place

We have taken combination of approach 1 and 2. However, X3D does not have fancy but-

tons like Adobe Flash, but its current setup serves the required purpose for the project.

Chapter 6

3D Model Generation

To display the text graphically we set up few important milestones. These milestones are

expressed in figure 6.1. Where, dotted milestone was already fulfilled before start of the

project, although it is briefly explained here for background knowledge, consistency and

better understanding of whole process.

During this explanation we will use the same program as below for consistency. There are

very huge and complex programs available but we have used a very small file for easiness

and to be able to show the whole process.

Program(BComp(BMap(BId),BMap(BId)))

Figure 6.1: Milestones to generate final 3D Model

31

Chapter 6. 3D Model Generation 32

6.1 Generate List Of ASTs

Existing optimizer was able to produce a text dump. This text dump was directly printed

on the go while optimization was in process. Furthermore, it did not include all the

required data. This was of no use for the current project. For further processing the

trace data was needed and thus it has to be stored in systematic way so that it can be

fetched later on. To do that the optimizer was changed to store the trace as it goes on

applying the rules. After doing that, the optimizer was able to create a text dump/trace

which included all the intermediate transformations along with their tree representation.

It was very important to include all the transformations in the trace; otherwise the paths

and the tree, that user looks at, will be out of sync.

At the end of all above operations, a full trace was generated, which included all ASTs

and this trace will look like below.

Program(BTrace([BComp(BMap(BId),BMap(BId)),BComp(BId,BMap(BId)),

BComp(BId,BId),BId]))

Now, this is the kind of trace that we want and have, to work upon and create a 3d model.

During this work, the working of optimizer was understood in detail. It was also learnt

that the optimizer is very flexible and it is very easy to modify it. Also it was found that

application of proper rule at proper time affects the performance a lot.

6.2 Adding Performance Data

After creating a trace, first the performance figures had to be appended to the trace.

This performance figures are currently fetched automatically, and manually appended to

the end of the trace file. Note that this process can also be automated with little effort,

but due to time constraint it was not implemented. We first use the existing bmf hask.pp

file to generate the hask file of any program. For the problem in question, the hask file

will look as follows:

B_trace [B_comp (B_map (B_id)) (B_map (B_id)) ,

B_comp (B_id) (B_map (B_id)) ,

B_comp (B_id) (B_id) ,

B_id]

Chapter 6. 3D Model Generation 33

This hask file is then run against existing data to get the efficiency figures. This each

figure shows number of abstract instructions required to run each transformed code. After

running the test data for the above problem, we got following performance figures, which

are then attached at the end of produced trace.

[204,103,2,1]

This will make the trace look like below:

Foo(Program(BTrace([BComp(BMap(BId),BMap(BId)),BComp(BId,BMap(BId)),

BComp(BId,BId),BId])),[204,103,2,1])

The Foo is added in the front manually to put the two lists (list of AST and list of

performance data) in a tuple. This tuple helps to fetch individual lists and then individual

elements from those. This tuple form looks like below:

Foo(LIST , LIST)

After completing this stage, we have a list of AST and list of performance data. Now

it’s time to know how our X3D file look likes, so that, accordingly it can be generated

automatically.

6.3 Generating X3D’s Syntax Definition

As X3D file has to be generated automatically, its full syntax must be known. Moreover

the functionality should be implemented which can generate this syntax. We have divided

this process into following 2 sub processes:

6.3.1 Knowing X3D Syntax

Same X3D files can be created in many ways as it follows the parent-child relationship

format of XML. To create the X3D file effectively from optimizer directly, X3D file’s

required syntax has to be fully explored and should be easy to create from optimizer. To

achieve this goal one X3D file was created which had all required functionality including

Chapter 6. 3D Model Generation 34

Figure 6.2: First stage file to know x3d syntax, which has to be automatically pro-
duced

Figure 6.3: Second stage file to know x3d syntax, which has to be automatically
produced

trees, buttons and navigation. This file had as many as 120+ ASTs. This file was created

all manually. The figures 6.2 and 6.3 show its initial and final versions.

While creating this file, different approaches were considered to make the X3D file short

and sweet.It also checked any scalability issues with X3d. At the end we came up with ap-

proach similar to object based approach. In which all the trees were divided by transform

translation(moving current location)(now on simply referred as transformation) and all

other drawing and navigation functionality were embedded as internal local functionality.

This has given us a repetitive feature in X3D file which can become easier to print from

Stratego program.

In addition to that, we decided to add 6 buttons for each tree to provide navigation.

Three of these buttons, which are red in color, can provide backward navigation and

three, which are green in color, provide forward navigation. We chose different shapes

as different buttons. Box represents movement of 20 trees, sphere represents movement

of 10 trees and cone represents movement of 1 tree. These are bounded to first and last

tree. So for example if user presses button to go 10 trees forward from 5th last tree then

the movement will only be up to last tree.

A brief view of syntax is shown below. Its detailed view can be seen in appendix 3.

Chapter 6. 3D Model Generation 35

<Viewpoint DEF="View2" description="view object 2" position="20 0 20"/>

<Transform translation="360 0 0">

<Group>

<Shape>

<!-- Draw Tree Here -->

</Shape>

<Transform translation="-2 -5 0">

<!-- Shape with Touch Sensor (Button) -->

</Transform>

...

<Script -- SCRIPT DEFINITION for button 1 GOES HERE -- >

<!-- Field information goes here -->

</Script>

<ROUTE -- ROUTE INFORMATION for button 1 GOES HERE -- />

<ROUTE -- ROUTE INFORMATION for button 1 GOES HERE -- />

...

</Group>

</Transform>

In the above shown syntax, all the viewpoints are defined earlier as shown in figure,

giving then unique identifier using DEF. This is required because all scripts are local

to individual transformations and so to move the camera around they should know the

required viewpoints.

After that there is a major transformation which points to the place where tree has to be

drawn. In this transformation everything necessary for one tree is wrapped in a group to

make those thing local and with respect to the transformation. Inside this transformation,

whole tree is drawn, all buttons are added, scripts are added and performance data is

added. Which method we use to draw a tree is irrelevant question here, because tree is

drawn as a child of group, which makes the presentation irrelevant and it just displays.

This is very important feature because if in future we just want to change the tree

representation then we do not have to change whole syntax or whole code. Just the bit

where it draws the tree should be changed.

Inside this group, another transformation is done to draw 6 shapes. We have used cone,

sphere, box and text in whole x3d representation. These shapes are transformed to

different locations to put the shape at that particular location. These transformations

Chapter 6. 3D Model Generation 36

are local. So for common functionality (like navigation buttons) the location remains the

same and makes it easy to automate. Its example can be seen below:

<Transform translation="-2 2 0">

<Shape>

<Appearance>

<Material emissiveColor="1 0 0"/>

</Appearance>

<Cone bottomRadius="0.25" height="0.5"/>

</Shape>

</Transform>

<Transform translation=" 5 -3 0 ">

<Shape>

<Text string="BId" />

</Shape>

</Transform>

A touch sensor is attached to these shapes to make it a button. Its example code is shown

below. In our final code we have used 6 different buttons, where 3 buttons to navigate

forward and 3 to navigate backward. We have allowed user to navigate 1 transformation

(using shape cone), 10 transformations (using shape sphere) or 20 transformations (using

shape box) forward (green color buttons) or backward (red color buttons) at a time.

This can be easily changed to any required amount. One of its examples (red cone -1

transformation backward) can be seen below:

<Transform translation="-2 -5 0">

<Shape>

<Appearance>

<Material emissiveColor="1 0 0"/>

</Appearance>

<Cone bottomRadius="0.25" height="0.5"/>

</Shape>

<TouchSensor DEF="Back_1" description="Back button for object 1"/>

</Transform>

Chapter 6. 3D Model Generation 37

After adding the button a script should be added to handle the user events. The example

code is shown below, which shows which format to use. This code is designed such that

it can be reused in whole 3D model with minimal changes.

<Script DEF="Script_Back_Single_1" url=""javascript:

function Back_Single_1IsActive(active)

{
 bindView1= TRUE;
}""vrmlscript:

function Back_Single_1IsActive(active)

{
 bindView1 = TRUE;
 }"">

<field accessType="inputOnly" name="Back_Single_1IsActive"

type="SFBool"/>

<field accessType="outputOnly" name="bindView1" type="SFBool"/>

</Script>

<ROUTE fromField="isActive" fromNode="Back_Single_1"

toField="Back_Single_1IsActive" toNode="Script_Back_Single_1"/>

<ROUTE fromField="bindView1" fromNode="Script_Back_Single_1"

toField="set_bind" toNode="View1"/>

6.3.2 Generating X3D Syntax

To generate this syntax all the parent child relation has to be finalized. It was also

necessary to know the data each node has to have. For example, Transform node should

know to which location it has to transform, shape node should know its size and color

etc. All these details were gathered from the giant file created manually.

The following syntax definition and signature files were created in smaller increments by

adding required functionality at a time. For instance, initially only tree was drawn, so

only syntax required for that was defined, later on Buttons were added and after that

navigational scripts were added.

Now, to create the syntax definition X3D’s literals had to be defined first. While creating

X3D abstract syntax, these literals allow transfer of data. They are defined in a similar

way of any other literals. For example positive float is defined by any number of digits,

followed by ”.”, followed by one or more number of digits, combination of positive float

Chapter 6. 3D Model Generation 38

and negative float creates co-ordinate, combination of one or more digits creates positive

integer, etc. The defined literals are shown below.

sorts Coord Intensity String PosFloat NegFloat PosInt Sequence

lexical syntax

[0-9]* "." [0-9]+ -> PosFloat

"-"PosFloat -> NegFloat

NegFloat | PosFloat -> Coord

PosFloat -> Intensity

[0-9]+ -> PosInt

PosInt -> Sequence

"\""[0-9]*"\"" -> String

lexical restrictions

Coord -/- [0-9]

Intensity -/- [0-9]

After generating this X3D literal file, the X3D syntax was generated. As said before, this

syntax defines the parent child relationship and number of valid arguments to any node.

For example, this file defines ”text” is a ”Shapecomponent”, means text node is a child

of shape node. This text declaration always by string argument, which will make it a

text node. Similarly, Transform followed by 3 coordinates and one shape or group node

can form a transform node. The example of syntax definition file is shown below, which

is just a part of whole syntax file. Whole syntax file is attached in appendix 1.

"Transform" Coord Coord Coord Group -> Transform {cons("Transform")}

"Transform" Coord Coord Coord Shape -> Transform {cons("Transform")}

"Text" String -> Text {cons("Text")}

Text -> Shapecomponent

The signature file is similar to syntax file, which does not include which input form a

node should have, but it defines in the form of relationships and arguments. Its example

is shown below. The whole signature file can be seen in appendix 2.

Transform : Coord * Coord * Coord * Shape -> Transform

Transform : Coord * Coord * Coord * Group -> Transform

: Text -> Shapecomponent

Text : String -> Text

Chapter 6. 3D Model Generation 39

6.4 From AST To X3D Abstract Syntax

After generating X3D syntax definitions, now the road was clear to convert AST into

X3D abstract syntax. To do that a program is created which takes trace of ASTs from

optimizer, X3D syntax definition and creates an X3D file with abstract syntax. X3D

abstract syntax file includes all the necessary viewpoints and trees. The remaining items

are added in the next phase.

6.4.1 Generating Viewpoints

One of the requirements of X3D file was that all the viewpoints1 have to be declared in

the beginning of the file. This was because, when individual transformations want to

navigate around, they should have definition for required view point. This definition is

similar to global variables in any functional language.

To achieve that whole AST trace was parsed once to create a viewpoint for each. This

also collects the total number of trees in trace. This number is used to restrict the camera

to go out of visibility. The following code (now on referred as initializer code) gets the

AST trace and from there it calls different rules (functions) to generate different parts of

the X3D abstract syntax file. In the following code TS stands for AST trace, VS is the

list of viewpoints and IS is the remaining file. It also creates global variable called Maxi,

which stores total number of trees, for future use.

GenTrace:

Foo(Program(BTrace(AST)),PF) -> Scene([VS|IS])

where

// generate viewpoints

<map-with-index(GenViewpoint)> AST => VS ;

// to remove quotes to make comp-atible with X3D

<RemoveQuote> AST => AST’;

// to get total number of transformations

<length> VS => maxi;

1Viewpoint is a point from virtual camera is put up to see the created 3d world. This view can be
similar to a human eye looking from that point

Chapter 6. 3D Model Generation 40

// prints total number of trees in the trace

debug(!"Total number of trees are -> ");

rules(Maxi:= maxi);

rules(Performance:=PF);

// generates trees

<map-with-index(GenOneTree)> AST’ => IS

The following code was used to generate the view points, where i is the sequence number

of tree in whole model and GenViewpoint is the name of the rule. So for example, for

tree 5 the result will be Viewpoint(250,0,30,5) , in which 250, 0, 30 stands for x, y, z

co-ordinate and 5 stands for serial number of tree. This code gets value of i from the

initializer rule. After calling the following code multiple times it creates list which is

referred as VS in initialize code and is attached to the beginning of the X3D abstract

syntax code.

GenViewpoint:

(i,BEXP) -> Viewpoint(OFFSET,0,30,i)

where

<mul>(i,50) => OFFSET

The list of viewpoints that above code can create is shown in figure below.

[Viewpoint(50,0,30,1),Viewpoint(100,0,30,2),

Viewpoint(150,0,30,3),Viewpoint(200,0,30,4)]

The output of this operation is store in VS. Which is the first part of final output of

generating x3d abstract syntax operation.

6.4.2 Removing Quotes

X3D files give parsing error if any of its text is wrapped in double quotes twice. E.g.

””12””. Because, it considers two texts wrapped in two pair of double quotes and it

Chapter 6. 3D Model Generation 41

cannot recognize the text in between. The example with twice double quotes is shown

in figure 6.4. The left hand side portion is abstract from AST and the right hand side

portion is its transformation in X3D.

Figure 6.4: The abstract syntax and its concrete syntax before removing extra quotes

It is easy to notice here that, the problem only occurs with integers wrapped in quotes.

Because the generation of X3D abstract syntax file knows the rules and thus removes

quotes automatically, but integers are just constants and hard to detect.

To overcome that problem, <RemoveQuote> strategy is used, which updates the trace

by transforming twice quoted text to once only quoted text. This strategy calls different

rules, which updates text as per their occurrence. For example rule UnQuoteBZip will

update the text with twice quotes which occur with BZip term.

RemoveQuote =

bottomup(UnQuotes)

rules

UnQuotes = UnQuoteBAddr <+ UnQuoteBZip <+ UnQuoteBInt <+ UnQuoteBCon <+ Leave

UnQuoteBAddr:

BAddr(x,y) -> BAddr(x’,y’)

where

<string-to-int> x => x’;

<string-to-int> y => y’

Chapter 6. 3D Model Generation 42

UnQuoteBZip:

BZip(x) -> BZip(x’)

where

<string-to-int> x => x’

UnQuoteBInt:

BInt(x) -> BInt(x’)

where

<string-to-int> x => x’

UnQuoteBCon:

BCon(x) -> BCon(x’)

where

<string-to-int> x => x’

Leave:

x -> x

Example of this, updated results are shown in figure 6.5.

Figure 6.5: The abstract syntax and its concrete syntax after removing extra quotes

Chapter 6. 3D Model Generation 43

6.4.3 Getting Indentation For Tree

To get the location where to transform, we have pre parsing stage where indenting is

calculated. Its code is as follows. Where, recursive call to MapIndent increases X co-

ordinate for child node. On the other hand, the Y co-ordinate indenting is decided, when

the text is being printed.

MapIndent (|n) =

?c#(ts);

<map (MapIndent (|<add>(2,n)))> ts => res;

<concat> res => res1;

<conc> ([(c,n)] ,res1) => res2

The output of that is indentation is appended to every node text. The example is shown

below.

[("BComp",1),("BMap",3),("BId",5),("BMap",3),("BId",5)]

The terms 1, 3, 5 are indentation on x axis. For indentation on Y axis we just have to

print each text below the previous one so we have just decreased location on Y axis by 1

with every node.

At the end of this stage skeleton of the X3d abstract syntax file was ready and it was the

time to actually put information (AST in our case) in the skeleton.

6.4.4 Printing Text

The initizlizer code will then start making the remaining part of the X3D abstract syntax

file, which includes all trees. As only trees will be drawn from this stage, it will have to

print only text and align it to represent in tree form. The following code will simply draw

the tree at given location. GenNode is the name of the rule. The Transform part in the

code will transform at the certain location and Shape(Text()) will print the text.

GenNode:

(y,(name,X)) -> Transform(X,Y,0,Shape(Text(name)))

where

<mul>(-1,y) => Y

Chapter 6. 3D Model Generation 44

In the above code X and Y are passed from the rule calling this rule. The output of the

above rule is just a node with transform. Its example for single node is shown below.

Where 15 -19 and 0 is the indenting/location for the text.

Transform(15,-19,0,Shape(Text("BLength"))),

At the end of this stage, we have a node ready. Now it is time to put all the nodes

together in a list.

6.4.5 Putting All Nodes Together To Form A Tree

After generating all the nodes with proper indenting they should be brought together to

form a tree. This is done by rule called GenTree. This rule basically calls GenNode rule

to create each node in the tree along with their indenting and glues them together to

form a NodeList. This NodeList is just another form of tree. This rule is shown below.

GenTree:

NodeList -> PIC

where

<map-with-index(id)> NodeList => temp;

<map (GenNode)> temp => PIC

The output of the above rule can be seen below, which is a list of all nodes along with

their transform.

[Transform(1,-1,0,Shape(Text("BComp"))),

Transform(3,-2,0,Shape(Text("BMap"))),Transform(5,-3,0,Shape(Text("BId"))),

Transform(3,-4,0,Shape(Text("BMap"))),Transform(5,-5,0,Shape(Text("BId")))]

At the end of this stage we have all the nodes of a tree in a list. So now we have to put

all of them in a group with required information to draw a tree.

Chapter 6. 3D Model Generation 45

6.4.6 Putting The Tree In A Group

The above generated output just contains a tree. But as per our requirement we have to

add buttons and navigational information to it. As explained in section 6.3.1, we have

to include all of this information into one big group. Along with that we have to give

certain information like current tree number, performance figure, and first/last number

of tree, etc. to next stage to create remaining of the tree. This is done using rule called

GenOneGroup. The rule is shown below.

GenOneGroup:

(j,GEXP) -> Group(j,BS,NS,BD,ND,BT,NT,PER,[NNS])

where

// j is passed because current position has to be known

// B-S/D/T stands for Back - Single/Double/Triple

// N-S/D/T stands for Next - Single/Double/Triple

// PER stands for performance

// adds X-axies indenting

<MapIndent (|1)> GEXP => NodeList;

// fetching performace figure from the

// performance list

<index> (j,<Performance>) => PER;

// adding -1 = subtract 1

// where tree should land with navigation to previous transformation

<max> (<add>(j,-1),1) => BS;

// where tree should land with navigation to next transformation

<min> (<add>(j,1),<Maxi>) => NS;

// where tree should land with navigation to 10 previous transformation

<max> (<add>(j,-10),1) => BD;

// where tree should land with navigation to 10 next transformation

Chapter 6. 3D Model Generation 46

<min> (<add>(j,10),<Maxi>) => ND;

// where tree should land with navigation to 20 previous transformation

<max> (<add>(j,-20),1) => BT;

// where tree should land with navigation to 20 next transformation

<min> (<add>(j,20),<Maxi>) => NT;

// generating all trees

<GenTree> NodeList => NNS

This rule also has to send the tree number, to which every navigation button will take.

This is managed by <max> and <min> strategies. The output at this stage looks like

below, which just contains one tree.

Group(1,1,2,1,4,1,4,204,

[[Transform(1,-1,0,Shape(Text("BComp"))),

Transform(3,-2,0,Shape(Text("BMap"))),Transform(5,-3,0,Shape(Text("BId"))),

Transform(3,-4,0,Shape(Text("BMap"))),Transform(5,-5,0,Shape(Text("BId")))]])

6.4.7 Putting Trees At Proper Location In Scene

After generating group containing tree, it must be put at its predefined location so that

it can be seen nicely in a graphics file and do not impose over other trees. This operation

is done by GenOneTree rule. This rule calls the GenOneGroup rule (which creates group

containing tree), gives them proper location (using transformation) and gives the output

to parent function which is the initializer code. This rule is shown below.

GenOneTree:

(j,BEXP) -> Transform(OFFSET,0,0,GEXP)

where

<mul>(j,50) => OFFSET;

<GenOneGroup> (j,BEXP) => GEXP

The output of this rule is shown below, which is similar to the previous output shown,

but has transformation attached in front.

Chapter 6. 3D Model Generation 47

Transform(50,0,0,

Group(1,1,2,1,4,1,4,204,

[[Transform(1,-1,0,Shape(Text("BComp"))),

Transform(3,-2,0,Shape(Text("BMap"))),Transform(5,-3,0,Shape(Text("BId"))),

Transform(3,-4,0,Shape(Text("BMap"))),Transform(5,-5,0,Shape(Text("BId")))]]))

6.4.8 Gathering All Trees

One program optimization will mostly have few transformations, means more than 1 tree.

Thus, these transformations have to be attached together. This operation is performed

by initializer code, by calling GenOneTree recursively. The responsible code is shown

below, which is a part of initializer code.

// generates tree

<map-with-index(GenOneTree)> AST’ => IS

The output of this operation is store in IS. Which is the second part of final output of

generating x3d abstract syntax operation. The output is shown below.

Transform(50,0,0,Group(1,1,2,1,4,1,4,204,

[[Transform(1,-1,0,Shape(Text("BComp"))),

Transform(3,-2,0,Shape(Text("BMap"))),Transform(5,-3,0,Shape(Text("BId"))),

Transform(3,-4,0,Shape(Text("BMap"))),Transform(5,-5,0,Shape(Text("BId")))]])),

Transform(100,0,0,Group(2,1,3,1,4,1,4,103,

[[Transform(1,-1,0,Shape(Text("BComp"))),Transform(3,-2,0,Shape(Text("BId"))),

Transform(3,-3,0,Shape(Text("BMap"))),Transform(5,-4,0,Shape(Text("BId")))]])),

Transform(150,0,0,Group(3,2,4,1,4,1,4,2,

[[Transform(1,-1,0,Shape(Text("BComp"))),Transform(3,-2,0,Shape(Text("BId"))),

Transform(3,-3,0,Shape(Text("BId")))]])),

Transform(200,0,0,Group(4,3,4,1,4,1,4,1,

[[Transform(1,-1,0,Shape(Text("BId")))]]))])

At the end of this operation, both out outputs (trees and viewpoints) are combined by

Scene([VS|IS]) which is part of initializer code. The output is shown in Appendix 4.

Chapter 6. 3D Model Generation 48

6.5 Generation of Final X3D File (Pretty Printing)

Till the previous phase only X3D abstract syntax file is created, which is close to X3D’s

required syntax but not proper X3D syntax. This phase will generate final X3D file

which is a fully XML based, has concrete X3D syntax, can be seen in X3D viewer, can

be navigated and much more. To achieve this we created a pretty printer which will take

the produced X3D abstract syntax file and will generate fully functional X3D file.

Pretty printing was one of the major works, so needed substantial amount of effort, in

creating the 3d model of the trace automatically, because the X3D follows XML syntax

and thus syntactical information is important to create the X3D file correctly. As ex-

plained earlier, we have tried to make the X3D syntax such that it becomes repetitive and

can be printed with very little modifications. E.g. two scripts for two different buttons

to go forward will look almost similar excapt very minimal change. Pretty printer is very

good at this and can print this repetitive data nicely with minimal input. This could not

have been done in Stratego without digressing from main goal.

In the following sections I have just explained some of the important parts of whole pretty

printing work. The whole pretty printing file can be seen and referred in appendix 5.

6.5.1 Printing File Header

For a file to be recognized as X3D file it should have proper header as explained in section

4.5.1. So this header information has to be added in the beginning of every file. This

is done in pretty printing by adding following information. Where, Scene recognizes the

scene and adds this header at each scene. In our example each file is going to have only one

scene, so this is not going to create any long-term problems. The term 1 represents the

input. This input is whole X3D abstract syntax file except first word, which is �scene�.

Scene -- H["<?xml version=\"1.0\" encoding=\"UTF-8\"?>

\n<!DOCTYPE X3D PUBLIC

\"http://www.web3d.org/specifications/X3D-3.1.dtd\"

\"file:///www.web3d.org/TaskGroups/X3D/translation/X3D-3.1.dtd\">

\n<X3D profile=\"Immersive\" version=\"3.1\"

xmlns:xsd=\"http://www.w3.org/2001/XMLSchema-instance\"

xsd:noNamespaceSchemaLocation=

\"http://www.web3d.org/specifications/X3D-3.1.xsd\">"]

Chapter 6. 3D Model Generation 49

"<Scene>"

_1

"\n\n </Scene>"

"\n</X3D>",

The output of this will be as follows.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE X3D PUBLIC "http://www.web3d.org/specifications/X3D-3.1.dtd"

"file:///www.web3d.org/TaskGroups/X3D/translation/X3D-3.1.dtd">

<X3D profile="Immersive" version="3.1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance"

xsd:noNamespaceSchemaLocation=

"http://www.web3d.org/specifications/X3D-3.1.xsd">

<Scene>

<!-- GIVEN INPUT WILL GO HERE -->

</Scene>

6.5.2 Printing Viewpoints

As explained in section 6.4.1, the viewpoints should come first, and thus in our X3D

abstract syntax file all viewpoints come first. To print those viewpoints, the following

code is used. This code recognizes term Viewpoint and executes. This also adds DEF to

every viewpoint to distinguish them from each other and make them accessible throughout

the file. Moreover, this code adds description to every view point for improved readability.

Viewpoint -- H hs=0[KW["\n<Viewpoint"]

" DEF=\"View"

_4

"\" description=\"view object"

_4

"\" position=\""]

_1 _2 _3

"\"/>",

Chapter 6. 3D Model Generation 50

In the above code the terms 1, 2 and 3 are inputs to pretty printer for this section,

which represents the X,Y and Z co-ordinates for the position of viewpoint. This position

will be the global position of the coressponding tree. The term 4 is again another

input which is the serial number of viewpoint. This serial number of camera will always

correspond to the serial number of tree. E.g. viewpoint 5 will show tree 5. This input 4

also gives global definition to this camera to access it anywhere in file. The above code

converts the input from the form,

Viewpoint(50,0,30,1),

Viewpoint(100,0,30,2),

Viewpoint(150,0,30,3),

Viewpoint(200,0,30,4)

into following output. It adds the global definitions so that these viewpoints can be

accessed anywhere in X3D file. It also adds the description to make the X3D code more

readable.

<Viewpoint DEF="View1" description="view object1" position=" 50 0 30 "/>

<Viewpoint DEF="View2" description="view object2" position=" 100 0 30 "/>

<Viewpoint DEF="View3" description="view object3" position=" 150 0 30 "/>

<Viewpoint DEF="View4" description="view object4" position=" 200 0 30 "/>

6.5.3 Adding Text

Text is a child of shape node in X3D. That’s why in X3D abstract syntax file text always

comes as a child of shape node. The following code recognizes this and prints shape and

text as its child for each node. It also uses Transform to put the text at given location.

Transform -- KW["\n<Transform translation=\""]

H[_1 _2 _3]

"\">"

_4

"\n</Transform>",

Shape -- KW["\n<Shape>"]

_1

"\n</Shape>",

Chapter 6. 3D Model Generation 51

Text -- H hs=0[KW["\n<Text string=\""]

_1

"\" />"],

The output of above code will convert the input

Transform(11,-15,0,Shape(Text("BOp"))

into following output.

<Transform translation="11 -15 0">

<Shape>

<Text string="BOp"/>

</Shape>

</Transform>

6.5.4 Adding Buttons

We have used different shapes to represent different buttons. These different types of

shapes are children of shape node as well as they all have appearance information attached

to it. To make it possible we decided to directly pretty print it. We have used the following

code:

"\n\n<Transform translation=\"-2 2 0\">"

"\n<Shape>

\n<Appearance>

\n<Material emissiveColor=\"1 0 0\"/>

\n</Appearance>"

"\n<Cone bottomRadius=\"0.25\" height=\"0.5\"/> \n</Shape>"

H hs=0["<TouchSensor DEF=\"Next_Double_"_1"\""

" description=\"10 Steps Next button for object "_1 "\"/>"]

"</Transform>"

In the above code, the information we have passed is the sequence number of tree for

which this button will be a part of. That helps to create a definition for touchsensor,

which eventually helps scripts to be attached to that. The above code will generate

following output, which is part whole output.

Chapter 6. 3D Model Generation 52

<Transform translation="-2 2 0">

<Shape>

<Appearance>

<Material emissiveColor="1 0 0"/>

</Appearance>

<Sphere radius="0.25" solid="true"/>

</Shape>

<TouchSensor DEF="Next_Double_1"

description="10 Steps Next button for object 1"/>

</Transform>

6.5.5 Adding Script And Route Information

Similar to buttons, script and route information is also pretty printed. We used the

following code to generate scripts and route.

H hs=0[

"\n<Script DEF=\"Script_Back_Single_" _1 "\""

" url=\""javascript:
"

" function Back_Single_" _1 "IsActive(active)"

" {
 bindView" _1 "= TRUE;
 }""vrmlscript:
"

" function Back_Single_" _1 "IsActive(active)"

" {
 bindView" _1 " = TRUE;
 }"\"> "

"\n<field accessType=\"inputOnly\" name=\"Back_Single_"_1"IsActive\"

type=\"SFBool\"/>"

"\n<field accessType=\"outputOnly\" name=\"bindView"_1"\" type=\"SFBool\"/>"

"\n</Script>"

"\n<ROUTE fromField=\"isActive\" fromNode=\"Back_Single_"_1"\""

"\n toField=\"Back_Single_"_1"IsActive\""

" toNode=\"Script_Back_Single_"_1"\"/>"

"\n<ROUTE fromField=\"bindView"_1"\" fromNode=\"Script_Back_Single_"_1"\" "

"\n toField=\"set_bind\""

" toNode=\"View"_2"\"/>"

In this code, it was necessary to give information about, where to move the camera on

user input. This will differ slightly for every button and thus for every script. This script

Chapter 6. 3D Model Generation 53

also have to refer to global viewpoints. So which viewpoint to refer is also given as a

parameter. The output will be as below:

<Script DEF="Script_Back_Single_1" url=""javascript:
 function Back_Single_1IsActive(active) {
 bindView1= TRUE;
 }""vrmlscript:
 function Back_Single_1IsActive(active) {
 bindView1 = TRUE;
 }"">

<field accessType="inputOnly" name="Back_Single_1IsActive" type="SFBool"/>

<field accessType="outputOnly" name="bindView1" type="SFBool"/>

</Script>

<ROUTE fromField="isActive" fromNode="Back_Single_1"

toField="Back_Single_1IsActive" toNode="Script_Back_Single_1"/>

<ROUTE fromField="bindView1" fromNode="Script_Back_Single_1"

toField="set_bind" toNode="View1"/>

Chapter 7

Results

As stated earlier the whole trace generation was done in separate stages after generating

AST trace. The output in X3D at different stages is shown below. The images are little

bit distorted because they had to be managed to fit in appropriate size. The example

taken is in the continuity of previous chapter,which is very basic one, so that whole tree

can be shown in image of appropriate size.

54

Chapter 7. Results 55

7.1 Printing Just Text

Figure 7.1: Result after printing text in X3D

At this phase, just some text was added in X3D environment. The content or arrangment

(indenting) of text was not important at this stage as those changes would be done in

future increments. But it can be clearly seen from above figure that why indenting and

printing tree nicely was important; because any tree in the shown form or any form which

is not proper,becomes ambigious to read and understand.

Chapter 7. Results 56

7.2 Printing Text In Tree Format

Figure 7.2: Result after printing text in tree format

It was discovered at this stage that, although our decided tree format can display any

tree nicely, tree can grow large or complex and its shape can not be predicted. Thus we

decided to put the buttons on top of the tree, so that it does not interfear in tree text.

In addition to that, in this result it can be clearly seen that even a small change in a tree

can be seen easily in this tree representation. For larger trees, a small change might cause

big change in overall shape, but still unaffected parts reamain same and can be spotted

easily.

Chapter 7. Results 57

7.3 Adding Buttons

Figure 7.3: Result after adding buttons

As explained earlier, buttons were added on the top of the tree.

Chapter 7. Results 58

7.4 Adding Scripts

Figure 7.4: Result after adding scripts, result of script can be seen in slider where it
shown the information

In this result as shown in status bar, when mouse is over a button, due to script addition

it shows a status message.

The displayed status message comes when the mouse is over green box for first tree.

Chapter 7. Results 59

7.5 Adding Performance Data

Figure 7.5: Result after adding performance data, which goes on top of the tree

The reason we decided to put navigation buttons on top of the tree, is the same that the

tree can grow large or complex and its shape can not be predicted.

Chapter 7. Results 60

7.6 Full Result

Figure 7.6: Zoom out view showing multiple trees

Figure 7.7: View of result when scene was tilted

The figures shown in 7.8 and 7.7 shows the virtual reality capability of X3D and shows

that 3D models can be seen from different angles or views.

It is worth noting that to come from any view (like but not limited to shown above) to

our tools default view we do not have to reverse the process. Instead we just have to

press any of the navigation buttons and the model itself comes to its default view while

performing navigation1, which is also one of the very interesting feature of our project.

1Navigation will ocure because we have pressed one of the navigation buttons

Chapter 7. Results 61

Figure 7.8: View of result when scene was flattened

Chapter 7. Results 62

7.7 Some Facts

In this section we have shown some facts and have shown what would have been better

with some extra features in X3D.

Figure 7.9: Table showing different facts

The above table shows what affects the size of X3D file. As it can be seen from difference

between files diagonal and map map addconst that, the original program size does not

matter. Because they both have approx same file size, but their number of transforma-

tions2 are different and thus the resulting file size is massively different. The same effect

can be seen for files called const2 and try prog 2. Moreover you can see that if number

of transformations double (first 3 files), then the resulting file size doubles.

In general it can be seen that with the growth in number of transformation, the X3D file

size increases exponentially. This is because of the things attached with each X3D tree

drawing. With each tree there are 6 buttons attached. For those 6 buttons, 6 scripts are

added. Moreover, every node has to be written along with its required other nodes. E.g.

to draw a cone somewhere; transformation, shape, appearance, material and cone nodes

has to be defined.

Although X3D can handle large files very easily, this trend is undesirable for very large

traces. This problem could have been solved, if scripts would have been able to take

parameters. In that case only 3 scripts need to be defined and a major work can be saved.

This size might have gone much bigger if we would have used functional approach for

scripts. This shows that the initial experiment’s phase was important for this successful

result.

2Number of transformations are 1 less then number of trees needed

Chapter 8

Future Work

The current project can bring excellent improvement in BMF optimizer. But still with

advances in X3D and change in available technology some extensions can be added to

this project.

In future this visualizer can be extended to be more user-friendly. New interactive menus

can be added, options can be given to tweak the 3D model like changing number of

transformations a button should skip, changing the zoom level, changing the speed of

animation etc. This all can be also be done runtime.

There is also possibility to show 3D graph which can display various performance figures

and by clicking on any individual point it can show the AST at that time.

Along with performance data, name of applied rule can also be shown in 3d model. A

hot spot in AST, where recent change has occurred, can also be distinguished by some

mechanism for faster understanding of transformation.

Currently there is a limitation in X3D about how many children a node can handle. This

limit was more than enough for current project goals, but while extending the project in

future, this limitation should also be considered and may need upgrade. Moreover, with

some more advances in X3D, time based animation can be implemented which can be

more useful.

The movement and navigation is good at this point but it can be made spectacular with

auto zooming in and out (as per the size of tree), a longer navigation (like 500 trees) should

be done at faster pace than a smaller navigation (like 5 trees) to keep the navigation time

relatively consistent. These features does not add any major functionality but it gives

spectacular view.

63

Chapter 9

Conclusion

The BMF optimizer is very efficient for program optimization. Obscurity resulting from

very high number of transformations is a bottleneck in its evolution. To break this

obscurity we have taken the approach to display all transformations, in AST format, in a

3D model which displays all required information. It is also possible to navigate through

long lists of transformations with user interaction. Due to this work, It can be checked that

which rule is performing better under one type of circumstances, which under another. It

can also be discovered, why any particular rule is not performing well. It is also possible

to verify that no rule under any circumstances breaks the code and leads into unstable

solution. This is a major helping hand in evolution of the optimizer. X3D, though in its

development phase, is a very good tool to create 3D models. It combines some desirable

features like open standard software, user interactivity, animation, scripting, good 3D

modeling, etc. all in one tool. Overall we have found that, X3D can create sophisticated

3D models simply and have flexibility and accessibility for novice to expert users. Last

but not the least, this work has opened a new dimension in the way BMF optimizer

evolves and the same strategy, to visualize the internal process, can be used for other

optimizers or compilers as well.

64

Appendix A

X3D Syntax File

module basic_x3d

imports x3d_literals

exports

sorts Scene Viewpoint Transform Scenecomponent Shape Shapecomponent

Appearance Text Polyline2D Material Group Groupcomponent

context-free syntax

{Scenecomponent ","}+ -> Scene {cons("Scene")}

"Viewpoint" Coord Coord Coord PosInt ->

Viewpoint {cons("Viewpoint")}

"Transform" Coord Coord Coord Group ->

Transform {cons("Transform")}

"Transform" Coord Coord Coord Shape ->

Transform {cons("Transform")}

Transform -> Scenecomponent

Viewpoint -> Scenecomponent

"Group" {Groupcomponent ","}+ -> Group {cons("Group")}

"Group" PosInt PosInt PosInt PosInt PosInt PosInt PosInt PosInt

{Groupcomponent ","}+ -> Group {cons("Group")}

"Shape" Appearance Shapecomponent ->

Shape {cons("Shape")}

"Shape" Shapecomponent -> Shape {cons("Shape")}

65

Appendix A. X3D Syntax File 66

Shape -> Groupcomponent

Transform -> Groupcomponent

"Text" String -> Text {cons("Text")}

Text -> Shapecomponent

"Polyline2D" Coord Coord Coord Coord ->

Polyline2D {cons("Polyline2D")}

Polyline2D -> Shapecomponent

"Appearance" Material -> Appearance {cons("Appearence")}

"Material" Intensity Intensity Intensity ->

Material {cons("Material")}

Appendix B

X3D Signature File

module Main

signature

constructors

: Scene -> X3dProg

Material : Intensity * Intensity * Intensity -> Material

Appearence : Material -> Appearance

Polyline2D : Coord * Coord * Coord * Coord -> Polyline2D

: Polyline2D -> Shapecomponent

: Text -> Shapecomponent

Text : String -> Text

: Transform -> Groupcomponent

: Shape -> Groupcomponent

Shape : Shapecomponent -> Shape

Shape : Appearance * Shapecomponent -> Shape

Group : PosInt * PosInt * PosInt * PosInt * PosInt * PosInt *

PosInt * PosInt * List(Groupcomponent) -> Group

Group : List(Groupcomponent) -> Group

: Viewpoint -> Scenecomponent

: Transform -> Scenecomponent

Transform : Coord * Coord * Coord * Shape -> Transform

Transform : Coord * Coord * Coord * Group -> Transform

Viewpoint : Coord * Coord * Coord * PosInt -> Viewpoint

Scene : List(Scenecomponent) -> Scene

67

Appendix B. X3D Signature File 68

: String -> String

: String -> PosInt

: String -> Intensity

: String -> Coord

signature

constructors

Some : a -> Option(a)

None : Option(a)

signature

constructors

Cons : a * List(a) -> List(a)

Nil : List(a)

Conc : List(a) * List(a) -> List(a)

Appendix C

Syntax Example For Single Tree

<Transform translation="860 0 0">

<Group>

<Shape>

<Text solid="true" string="44"/><!-- TREE WILL GO HERE -->

</Shape>

<Transform translation="-2 -5 0">

<Shape>

<Appearance>

<Material emissiveColor="1 0 0"/>

</Appearance>

<Cone bottomRadius="0.25" height="0.5"/>

</Shape>

<TouchSensor DEF="Back_Single_44" description="Single Back button

for object 44"/>

</Transform>

<Transform translation="2 -5 0">

<Shape>

<Appearance>

<Material emissiveColor="0 1 0"/>

</Appearance>

<Cone bottomRadius="0.25" height="0.5"/>

</Shape>

<TouchSensor DEF="Next_Single_44" description="Single Next

69

Appendix c. Syntax Example For Single Tree 70

button for object 44"/>

</Transform>

<Transform translation="-3 -5 0">

<Shape>

<Appearance>

<Material emissiveColor="1 0 0"/>

</Appearance>

<Sphere radius="0.25" solid="true"/>

</Shape>

<TouchSensor DEF="Back_Double_44" description="5 back button for

object 44"/>

</Transform>

<Transform translation="3 -5 0">

<Shape>

<Appearance>

<Material emissiveColor="0 1 0"/>

</Appearance>

<Sphere radius="0.25" solid="true"/>

</Shape>

<TouchSensor DEF="Next_Double_44" description="5 next button for

object 44"/>

</Transform>

<Transform translation="-4 -5 0">

<Shape>

<Appearance>

<Material emissiveColor="1 0 0"/>

</Appearance>

<Box size="0.5 0.5 0.5"/>

</Shape>

<TouchSensor DEF="Back_Tripal_44" description="15 back button for

object 44"/>

</Transform>

<Transform translation="4 -5 0">

<Shape>

<Appearance>

<Material emissiveColor="0 1 0"/>

Appendix c. Syntax Example For Single Tree 71

</Appearance>

<Box size="0.5 0.5 0.5"/>

</Shape>

<TouchSensor DEF="Next_Tripal_44" description="15 next button for

object 44"/>

</Transform>

<Script DEF="Script_Back_Single_44" url=""javascript:
 function

Back_Single_44IsActive(active) {
 bindView44 = TRUE;

}""vrmlscript:
 function Back_Single_44IsActive(active) {

bindView44 = TRUE;
 }"">

<field accessType="inputOnly" name="Back_Single_44IsActive" type="SFBool"/>

<field accessType="outputOnly" name="bindView44" type="SFBool"/>

</Script>

<ROUTE fromField="isActive" fromNode="Back_Single_44"

toField="Back_Single_44IsActive" toNode="Script_Back_Single_44"/>

<ROUTE fromField="bindView44" fromNode="Script_Back_Single_44"

toField="set_bind" toNode="View43"/>

<Script DEF="Script_Next_Single_44" url=""javascript:
 function

Next_Single_44IsActive(active) {
 bindView45 = TRUE;

}""vrmlscript:
 function Next_Single_44IsActive(active) {

bindView45 = TRUE;
 }"">

<field accessType="inputOnly" name="Next_Single_44IsActive" type="SFBool"/>

<field accessType="outputOnly" name="bindView45" type="SFBool"/>

</Script>

<ROUTE fromField="isActive" fromNode="Next_Single_44"

toField="Next_Single_44IsActive" toNode="Script_Next_Single_44"/>

<ROUTE fromField="bindView45" fromNode="Script_Next_Single_44"

toField="set_bind" toNode="View45"/>

<Script DEF="Script_Back_Double_44" url=""javascript:
 function

Back_Double_44IsActive(active) {
 bindView44 = TRUE;

}""vrmlscript:
 function Back_Double_44IsActive(active) {

bindView44 = TRUE;
 }"">

<field accessType="inputOnly" name="Back_Double_44IsActive" type="SFBool"/>

Appendix c. Syntax Example For Single Tree 72

<field accessType="outputOnly" name="bindView44" type="SFBool"/>

</Script>

<ROUTE fromField="isActive" fromNode="Back_Double_44"

toField="Back_Double_44IsActive" toNode="Script_Back_Double_44"/>

<ROUTE fromField="bindView44" fromNode="Script_Back_Double_44"

toField="set_bind" toNode="View49"/>

<Script DEF="Script_Next_Double_44" url=""javascript:
 function

Next_Double_44IsActive(active) {
 bindView49 = TRUE;

}""vrmlscript:
 function Next_Double_44IsActive(active) {

bindView49 = TRUE;
 }"">

<field accessType="inputOnly" name="Next_Double_44IsActive" type="SFBool"/>

<field accessType="outputOnly" name="bindView49" type="SFBool"/>

</Script>

<ROUTE fromField="isActive" fromNode="Next_Double_44"

toField="Next_Double_44IsActive" toNode="Script_Next_Double_44"/>

<ROUTE fromField="bindView49" fromNode="Script_Next_Double_44"

toField="set_bind" toNode="View49"/>

<Script DEF="Script_Back_Tripal_44" url=""javascript:
 function

Back_Tripal_44IsActive(active) {
 bindView44 = TRUE;

}""vrmlscript:
 function Back_Tripal_44IsActive(active) {

bindView44 = TRUE;
 }"">

<field accessType="inputOnly" name="Back_Tripal_44IsActive" type="SFBool"/>

<field accessType="outputOnly" name="bindView44" type="SFBool"/>

</Script>

<ROUTE fromField="isActive" fromNode="Back_Tripal_44"

toField="Back_Tripal_44IsActive" toNode="Script_Back_Tripal_44"/>

<ROUTE fromField="bindView44" fromNode="Script_Back_Tripal_44"

toField="set_bind" toNode="View29"/>

<Script DEF="Script_Next_Tripal_44" url=""javascript:
 function

Next_Tripal_44IsActive(active) {
 bindView59 = TRUE;

}""vrmlscript:
 function Next_Tripal_44IsActive(active) {

bindView59 = TRUE;
 }"">

<field accessType="inputOnly" name="Next_Tripal_44IsActive" type="SFBool"/>

Appendix c. Syntax Example For Single Tree 73

<field accessType="outputOnly" name="bindView59" type="SFBool"/>

</Script>

<ROUTE fromField="isActive" fromNode="Next_Tripal_44"

toField="Next_Tripal_44IsActive" toNode="Script_Next_Tripal_44"/>

<ROUTE fromField="bindView59" fromNode="Script_Next_Tripal_44"

toField="set_bind" toNode="View59"/>

</Group>

</Transform>

Appendix D

Abstract Syntax File Example

This file is map id 2.ast

Scene([[Viewpoint(50,0,30,1),Viewpoint(100,0,30,2),

Viewpoint(150,0,30,3),Viewpoint(200,0,30,4)],

Transform(50,0,0,Group(1,1,2,1,4,1,4,204,[[

Transform(1,-1,0,Shape(Text("BComp"))),Transform(3,-2,0,Shape(Text("BMap"))),

Transform(5,-3,0,Shape(Text("BId"))),Transform(3,-4,0,Shape(Text("BMap"))),

Transform(5,-5,0,Shape(Text("BId")))]])),

Transform(100,0,0,Group(2,1,3,1,4,1,4,103,

[[Transform(1,-1,0,Shape(Text("BComp"))),Transform(3,-2,0,Shape(Text("BId"))),

Transform(3,-3,0,Shape(Text("BMap"))),Transform(5,-4,0,Shape(Text("BId")))]])),

Transform(150,0,0,Group(3,2,4,1,4,1,4,2,

[[Transform(1,-1,0,Shape(Text("BComp"))),Transform(3,-2,0,Shape(Text("BId"))),

Transform(3,-3,0,Shape(Text("BId")))]])),

Transform(200,0,0,Group(4,3,4,1,4,1,4,1,

[[Transform(1,-1,0,Shape(Text("BId")))]]))])

74

Appendix E

Pretty Printing File

[

Scene -- H["<?xml version=\"1.0\" encoding=\"UTF-8\"?>

\n<!DOCTYPE X3D PUBLIC

\"http://www.web3d.org/specifications/x3d-3.1.dtd\"

\"file:///www.web3d.org/TaskGroups/x3d/translation/x3d-3.1.dtd\">

\n<X3D profile=\"Immersive\" version=\"3.1\"

xmlns:xsd=\"http://www.w3.org/2001/XMLSchema-instance\"

xsd:noNamespaceSchemaLocation=

\"http://www.web3d.org/specifications/x3d-3.1.xsd\">"]

"<Scene>"

_1

"\n\n </Scene>"

"\n</X3D>",

Scene.1:iter-sep -- _1 KW["\n"],

Viewpoint -- H hs=0[KW["\n<Viewpoint"]

" DEF=\"View"

_4

"\" description=\"view object"

_4

"\" position=\""]

_1 _2 _3

"\"/>",

75

Appendix E. Pretty Printing File 76

Transform -- KW["\n<Transform translation=\""]

H[_1 _2 _3]

"\">"

_4

"\n</Transform>",

Transform -- KW["\n<Transform translation=\""]

H[_1 _2 _3]

"\">"

_4

"\n</Transform>",

Group -- H [KW["\n<Group>"]] _1 "\n</Group>",

Group.1:iter-sep -- _1 KW[","],

Group -- KW["\n<Group>"]

"\n\n<Transform translation=\"0 4 0\">"

"\n<Shape>"

H hs=0["\n<Text string=\""_8"\">"]

"<FontStyle justify=’\"MIDDLE\" \"MIDDLE\"’/>"

"\n</Text>"

"\n</Shape>"

"\n</Transform>"

"\n\n<Transform translation=\"-2 2 0\">"

"\n<Shape> \n<Appearance> \n<Material emissiveColor=\"1 0 0\"/>

\n</Appearance>"

"\n<Cone bottomRadius=\"0.25\" height=\"0.5\"/> \n</Shape>"

H hs=0["<TouchSensor DEF=\"Back_Single_"_1"\""

" description=\"Single Back button for object "_1 "\"/>"]

"</Transform>"

Appendix E. Pretty Printing File 77

"\n\n<Transform translation=\"2 2 0\">"

"\n<Shape> \n<Appearance> \n<Material emissiveColor=\"0 1 0\"/>

\n</Appearance>"

"\n<Cone bottomRadius=\"0.25\" height=\"0.5\"/> \n</Shape>"

H hs=0["<TouchSensor DEF=\"Next_Single_"_1"\""

" description=\"Single Next button for object "_1 "\"/>"]

"</Transform>"

"\n\n<Transform translation=\"-3 2 0\">"

"\n<Shape> \n<Appearance> \n<Material emissiveColor=\"1 0 0\"/>

\n</Appearance>"

"\n<Sphere radius=\"0.25\" solid=\"true\"/> \n</Shape>"

H hs=0["<TouchSensor DEF=\"Back_Double_"_1"\""

" description=\"10 Steps Back button for object "_1 "\"/>"]

"</Transform>"

"\n\n<Transform translation=\"3 2 0\">"

"\n<Shape> \n<Appearance> \n<Material emissiveColor=\"0 1 0\"/>

\n</Appearance>"

"\n<Sphere radius=\"0.25\" solid=\"true\"/> \n</Shape>"

H hs=0["<TouchSensor DEF=\"Next_Double_"_1"\""

" description=\"10 Steps Next button for object "_1 "\"/>"]

"</Transform>"

"\n\n<Transform translation=\"-4 2 0\">"

"\n<Shape> \n<Appearance> \n<Material emissiveColor=\"1 0 0\"/>

\n</Appearance>"

"\n<Box size=\"0.5 0.5 0.5\" solid=\"true\"/> \n</Shape>"

H hs=0["<TouchSensor DEF=\"Back_Triple_"_1"\""

" description=\"20 Steps Back button for object "_1 "\"/>"]

"</Transform>"

"\n\n<Transform translation=\"4 2 0\">"

"\n<Shape> \n<Appearance> \n<Material emissiveColor=\"0 1 0\"/>

\n</Appearance>"

Appendix E. Pretty Printing File 78

"\n<Box size=\"0.5 0.5 0.5\" solid=\"true\"/> \n</Shape>"

H hs=0["<TouchSensor DEF=\"Next_Triple_"_1"\""

" description=\"20 Steps Next button for object "_1 "\"/>"]

"</Transform>"

"\n" _9 "\n\n"

H hs=0[

"\n<Script DEF=\"Script_Back_Single_" _1 "\""

" url=\""javascript:
"

" function Back_Single_" _1 "IsActive(active)"

" {
 bindView" _1 "= TRUE;
 }""vrmlscript:
"

" function Back_Single_" _1 "IsActive(active)"

" {
 bindView" _1 " = TRUE;
 }"\"> "

"\n<field accessType=\"inputOnly\" name=

\"Back_Single_"_1"IsActive\" type=\"SFBool\"/>"

"\n<field accessType=\"outputOnly\" name=

\"bindView"_1"\" type=\"SFBool\"/>"

"\n</Script>"

"\n<ROUTE fromField=\"isActive\" fromNode=\"Back_Single_"_1"\""

"\n toField=\"Back_Single_"_1"IsActive\""

" toNode=\"Script_Back_Single_"_1"\"/>"

"\n<ROUTE fromField=\"bindView"_1"\" fromNode=\"Script_Back_Single_"_1"\" "

"\n toField=\"set_bind\""

" toNode=\"View"_2"\"/>"

"\n\n<Script DEF=\"Script_Next_Single_"_1"\""

" url=\""javascript:
"

" function Next_Single_"_1"IsActive(active)"

" {
 bindView"_3" = TRUE;
 }""vrmlscript:
"

" function Next_Single_"_1"IsActive(active)"

" {
 bindView"_3" = TRUE;
 }"\">"

Appendix E. Pretty Printing File 79

"\n<field accessType=\"inputOnly\" name=\"Next_Single_"_1"IsActive\"

type=\"SFBool\"/>"

"\n<field accessType=\"outputOnly\" name=\"bindView"_3"\"

type=\"SFBool\"/>"

"\n</Script>"

"\n<ROUTE fromField=\"isActive\" fromNode=\"Next_Single_"_1"\""

"\n toField=\"Next_Single_"_1"IsActive\""

" toNode=\"Script_Next_Single_"_1"\"/>"

"\n<ROUTE fromField=\"bindView"_3"\" fromNode=\"Script_Next_Single_"_1"\""

"\n toField=\"set_bind\""

" toNode=\"View"_3"\"/>"

]

H hs=0[

"\n<Script DEF=\"Script_Back_Double_" _1 "\""

" url=\""javascript:
"

" function Back_Double_" _1 "IsActive(active)"

" {
 bindView" _1 "= TRUE;
 }""vrmlscript:
"

" function Back_Double_" _1 "IsActive(active)"

" {
 bindView" _1 " = TRUE;
 }"\"> "

"\n<field accessType=\"inputOnly\" name=

\"Back_Double_"_1"IsActive\" type=\"SFBool\"/>"

"\n<field accessType=\"outputOnly\" name=

\"bindView"_1"\" type=\"SFBool\"/>"

"\n</Script>"

"\n<ROUTE fromField=\"isActive\" fromNode=\"Back_Double_"_1"\""

"\n toField=\"Back_Double_"_1"IsActive\""

" toNode=\"Script_Back_Double_"_1"\"/>"

"\n<ROUTE fromField=\"bindView"_1"\" fromNode=\"Script_Back_Double_"_1"\" "

"\n toField=\"set_bind\""

" toNode=\"View"_4"\"/>"

Appendix E. Pretty Printing File 80

"\n\n<Script DEF=\"Script_Next_Double_"_1"\""

" url=\""javascript:
"

" function Next_Double_"_1"IsActive(active)"

" {
 bindView"_5" = TRUE;
 }""vrmlscript:
"

" function Next_Double_"_1"IsActive(active)"

" {
 bindView"_5" = TRUE;
 }"\">"

"\n<field accessType=\"inputOnly\" name=\"Next_Double_"_1"IsActive\"

type=\"SFBool\"/>"

"\n<field accessType=\"outputOnly\" name=\"bindView"_5"\"

type=\"SFBool\"/>"

"\n</Script>"

"\n<ROUTE fromField=\"isActive\" fromNode=\"Next_Double_"_1"\""

"\n toField=\"Next_Double_"_1"IsActive\""

" toNode=\"Script_Next_Double_"_1"\"/>"

"\n<ROUTE fromField=\"bindView"_5"\" fromNode=\"Script_Next_Double_"_1"\""

"\n toField=\"set_bind\""

" toNode=\"View"_5"\"/>"

]

H hs=0[

"\n<Script DEF=\"Script_Back_Triple_" _1 "\""

" url=\""javascript:
"

" function Back_Triple_" _1 "IsActive(active)"

" {
 bindView" _1 "= TRUE;
 }""vrmlscript:
"

" function Back_Triple_" _1 "IsActive(active)"

" {
 bindView" _1 " = TRUE;
 }"\"> "

"\n<field accessType=\"inputOnly\" name=

\"Back_Triple_"_1"IsActive\" type=\"SFBool\"/>"

"\n<field accessType=\"outputOnly\" name=

\"bindView"_1"\" type=\"SFBool\"/>"

"\n</Script>"

Appendix E. Pretty Printing File 81

"\n<ROUTE fromField=\"isActive\" fromNode=\"Back_Triple_"_1"\""

"\n toField=\"Back_Triple_"_1"IsActive\""

" toNode=\"Script_Back_Triple_"_1"\"/>"

"\n<ROUTE fromField=\"bindView"_1"\" fromNode=\"Script_Back_Triple_"_1"\" "

"\n toField=\"set_bind\""

" toNode=\"View"_6"\"/>"

"\n\n<Script DEF=\"Script_Next_Triple_"_1"\""

" url=\""javascript:
"

" function Next_Triple_"_1"IsActive(active)"

" {
 bindView"_7" = TRUE;
 }""vrmlscript:
"

" function Next_Triple_"_1"IsActive(active)"

" {
 bindView"_7" = TRUE;
 }"\">"

"\n<field accessType=\"inputOnly\" name=\"Next_Triple_"_1"IsActive\"

type=\"SFBool\"/>"

"\n<field accessType=\"outputOnly\" name=\"bindView"_7"\"

type=\"SFBool\"/>"

"\n</Script>"

"\n<ROUTE fromField=\"isActive\" fromNode=\"Next_Triple_"_1"\""

"\n toField=\"Next_Triple_"_1"IsActive\""

" toNode=\"Script_Next_Triple_"_1"\"/>"

"\n<ROUTE fromField=\"bindView"_7"\" fromNode=\"Script_Next_Triple_"_1"\""

"\n toField=\"set_bind\""

" toNode=\"View"_7"\"/>"

]

"\n\n</Group>",

Group.2:iter-sep -- _1 KW[","],

Shape -- KW["<Shape>"]

H[_1 _2]

Appendix E. Pretty Printing File 82

"\n</Shape>",

Shape -- KW["\n<Shape>"]

_1

"\n</Shape>",

Text -- H hs=0[KW["\n<Text string=\""]

_1

"\" />"],

Polyline2D -- KW["<Polyline2D lineSegments=\""]

H[_1 _2 _3 _4]

"\"/>",

Cone -- KW["<Cone bottomRadius=\"0.25\" height=\"0.5\" /> "],

Appearence -- KW["\n<Appearance>"]

_1

"\n</Appearance>",

Material -- KW["\n<Material emissiveColor=\""]

H[_1 _2 _3]

"\"/>"

]

Bibliography

[1] http://releases.strategoxt.org/strategoxt-manual/unstable/manual/chunk-

chapter/tutorial-software-transformation-systems.html

[2] http://releases.strategoxt.org/strategoxt-manual/unstable/manual/chunk-

chapter/rules-and-strategies.html

[3] Stratego/XT 0.16: Components for Transformation Systems,

Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, Eelco Visser

http://igitur-archive.library.uu.nl/math/2007-1127-200705/bravenboer 05 strategoxt016components.pdf

[4] X3D: Extensible 3D Graphics for Web Authors,

Brutzman, Don; Daly, Leonard,

[5] http://www.web3d.org/about/overview/

[6] http://www.web3d.org/x3d/workgroups/cad/

[7] The Simulation and Visualization of Parallel BMF Code

Paul Martinaitis

http://www.cs.adelaide.edu.au/ brad/students/paulm.pdf Nov-98

[8] http://releases.strategoxt.org/strategoxt-manual/unstable/manual/chunk-

chapter/stratego-terms.html

[9] http://www.adobe.com/products/flashlite/

[10] http://www.adobe.com/products/player census/flashplayer/version penetration.html

[11] http://www.adobe.com/products/flash/

[12] http://tuesdaycreative.vox.com/library/post/the-top-ten-open-source-actionscript-

tools.html

[13] http://www.adobe.com/products/flash/features/allfeatures/

83

Bibliography 84

[14] http://www.povray.org/resources/

[15] http://www.blender.org/features-gallery/features/

[16] http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=8108755

[17] http://www.adobe.com/devnet/acrobat3d/

[18] Strategic Rewriting for Simplified Optimisation of Point-Free Programs

Brad Alexander

[19] 3D Graphics on the Internet

Hans J. Wolters

http://www.hpl.hp.co.uk/research/mmsl/presentations/3d/3dweb.pdf

[20] http://releases.strategoxt.org/strategoxt-manual/unstable/manual/chunk-

chapter/ref-ast2text.html

[21] http://www.web3d.org/x3d/specifications/ISO-IEC-19775-

X3DAbstractSpecification/Part01/components/interp.html

[22] http://www.web3d.org/x3d/specifications/ISO-IEC-19775-

X3DAbstractSpecification/Part01/components/scripting.html

[23] http://www.web3d.org/x3d/specifications/ISO-IEC-19775-

X3DAbstractSpecification/Part01/components/pointingsensor.html

[24] http://releases.strategoxt.org/strategoxt-manual/unstable/manual/chunk-

chapter/stratego-traversal-strategies.html

[25] http://www.graphviz.org/

[26] SWF File Format Specification, Version 9

Adobe

http://www.adobe.com/devnet/swf/pdf/swf file format spec v9.pdf

[27] http://www.program-transformation.org/Stratego/

[28] http://sketchup.google.com/product/gsu.html

