
Automated Parallelisation of code written

in the Bird-Meertens Formalism

Joseph Windows

November 3, 2003



Abstract

The Bird-Meertens Formalism (BMF) is a calculus of higher order func-
tions used to derive functional programs. It shows promise as a basis for a
parallel model due to its highly parallelisable building blocks and the ease
in which its code can be transformed through equalities.

There is a reasonably large body of work exploring parallel cost models
and parallelisation techniques for BMF constructs and of related constructs
in related languages. Very little of this work is focused on the development of
a constructive framework for parallelising entire programs written in BMF.
An actual implementation will need technology developed by such research.

This paper describes a partial implementation of a paralleliser for such
programs and the issues encountered while developing it.



Contents

1 Introduction 4

2 Related Work 6

3 Preliminaries 7
3.1 Project Context . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Bird-Meertens Formalism . . . . . . . . . . . . . . . . 7
3.1.2 The Adl Language Project . . . . . . . . . . . . . . . 8

3.2 Code Transformation . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 Source Code . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Target Code . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.3 Process . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.1 Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Implementation 13
4.1 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Right-Associative Function Compositions . . . . . . . 13
4.1.2 The Temporary Sentinel . . . . . . . . . . . . . . . . . 14
4.1.3 Second Pass: While and If Sweep . . . . . . . . . . . . 14
4.1.4 During parallelisation . . . . . . . . . . . . . . . . . . 19
4.1.5 Post-Parallelisation Cleanup . . . . . . . . . . . . . . . 19

4.2 Parallelising Individual Constructs . . . . . . . . . . . . . . . 19
4.2.1 Transpose . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Zip and Mask . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.3 Select . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Alltup / Allvec . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.1 Compaction . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.2 Vector Input . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.3 Following a While/If . . . . . . . . . . . . . . . . . . . 22

4.4 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 While/If . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1



4.5.1 If . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5.2 While . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Results 28
5.1 Example 1: Maximum Segment Sum . . . . . . . . . . . . . . 28
5.2 Example 2: Remote Distance . . . . . . . . . . . . . . . . . . 31
5.3 Example 3: While Loop . . . . . . . . . . . . . . . . . . . . . 33

6 Conclusion / Issues 34
6.1 Compaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Further Optimisation . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Propagating Multiple Split Constructs . . . . . . . . . . . . . 35
6.4 Reduction and Redistribution . . . . . . . . . . . . . . . . . . 36

6.4.1 Unwarranted Parallelism . . . . . . . . . . . . . . . . . 36
6.4.2 Inside While Constructs . . . . . . . . . . . . . . . . . 37

6.5 Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.6 Non-Recursive Parallelisation . . . . . . . . . . . . . . . . . . 38
6.7 Type Information . . . . . . . . . . . . . . . . . . . . . . . . . 38

A Paralleliser Code 42

2



List of Figures

3.1 Sequential BMF constructs . . . . . . . . . . . . . . . . . . . 10
3.2 Parallel BMF constructs . . . . . . . . . . . . . . . . . . . . . 11
3.3 Parallelisation of map . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Tuple flattening: finding the tuple structure . . . . . . . . . . 17
4.2 Tuple flattening: building the inverse structure . . . . . . . . 17
4.3 Transpose parallelisation techniques . . . . . . . . . . . . . . 20
4.4 Processing an alltup with vector input . . . . . . . . . . . . . 22
4.5 Processing an alltup with tuple input . . . . . . . . . . . . . . 23
4.6 Parallelisation of an if construct . . . . . . . . . . . . . . . . 25
4.7 Parallelisation of a while construct . . . . . . . . . . . . . . . 26

5.1 Execution times of MSS for various data sizes . . . . . . . . . 29
5.2 Execution trace of MSS on 32 nodes . . . . . . . . . . . . . . 30
5.3 View of the MSS communications for the parallelised scan . . 31
5.4 Speedup of Remote Distance parallelisations . . . . . . . . . . 32
5.5 Execution times of the while loop example . . . . . . . . . . . 33

3



Chapter 1

Introduction

The incentive for using parallelism is speedup; if we use N processors, we
might expect to be able to execute a task N times faster than when using one
processor. Of course, this is the ideal scenario, but the idea stays the same:
speeding up execution time. Parallel software has not yet become normal
practice because there is currently no established method for creating it.
There are, however, a few possible approaches.

New languages can be constructed that are aimed specifically at paral-
lel computing. Or parallel extensions can be added to existing languages.
These methods would involve specifying programs directly with parallel com-
ponents.

To make the process more automated, an intelligent parallelising com-
piler is needed. Automatic parallelisation has proven to be a difficult task
[5].

The Adl language project’s research includes exploring practical tech-
niques for the automatic parallelisation of functional programming languages
[2]. Intrinsic to the approach is the use of Bird-Meertens Formalism (BMF)
as an intermediate form.

The end result of parallelising a sequential program maintains the orig-
inal meaning of the code, but adds as much parallelism as possible. BMF
code can be simply transformed using equalities, which greatly assists with
parallelisation. The code can also be easily parallelised manually, which
assists in testing and debugging.

There has been a significant amount of research exploring strategies for
the parallelisation of BMF constructs [1, 15, 10] and of related constructs in
related languages. Most of the parallelisation strategies for BMF have thus
far been only manually applied, although some work towards an automated
implementation is currently in progress [10].

A prototype needed to be developed to assess how effectively these tech-
niques could be implemented. This paper describes a partial implementation
of a paralleliser for BMF code, mainly using the techniques described in [1].

4



Section 2 lists work related to this topic. Section 3 expands on the con-
cepts of the Bird-Meertens Formalism and the research of the Adl Project.
It also introduces the general process to be implemented. The implementa-
tion is explained in section 4. Section 5 discusses experiments carried out
to evaluate the performance of the paralleliser. Issues that arose during the
process are discussed in a conclusion to the project in section 6.

The full code for the paralleliser is in appendix A.

5



Chapter 2

Related Work

The context for this work relates back to the early nineties with Hu and
Sun [7, 20] discussing functional and algebraic approaches to synthesising
systolic arrays – arrays of processors in which data flows synchronously
between neighbours. Hu et al [8, 9] went on to discuss list homomorphisms
– those functions on finite lists that promote through list concatenation –
and their application to optimisation and parallelism.

Onoue, Hu, et al [22] constructed the calculational fusion system, HYLO,
for deriving efficient programs. Fusion is where separate pieces of programs
are fused together, in this case, transforming complex recursive definitions
to linear recursive definitions, leading to an efficient program without inter-
mediate data structures.

Roe [15] was first to investigate the use of BMF to derive efficient parallel
programs for a variety of machines. Skillicorn [18] refined the process in
terms of categorical data structures. With Cai [19], he developed a cost
model for parallel functional programming.

Banerjee and Walinsky [21] created a data-parallel compiler for FP –
a close relative to BMF, although less theoretical. They also worked to-
wards eliminating intermediate data structures. There was less emphasis
on optimisation in the FP form, however. Parallelisation occurred after
transformation to imperative form.

The Adl Project [2], on the other hand, took the approach of transform-
ing the code while still in functional form. BMF was used as an intermediate
form for the efficient compilation of their own parallel functional language.
This language was influenced primarily by SISAL [14]. One of the reasons
SISAL itself wasn’t used was that compilation by program transformation
was difficult.

Martinaitas [13] created a simulator to measure the performance of se-
quential and parallel BMF code.

6



Chapter 3

Preliminaries

Section 3.1 discusses the motivation behind this project, discussing BMF
and the Adl project. Section 3.2 describes the constructs of BMF, and the
general notion of how to implement parallelisation. Section 3.3 describes
the tools used during the project.

3.1 Project Context

Here I describe BMF and its application to parallel programming. I then
expand on the research of the Adl project, of which, this paper will be a
contribution.

3.1.1 Bird-Meertens Formalism

Bird-Meertens Formalism (BMF), or Squiggol, is a calculus for deriving and
expressing functional programs. It consists of a set of higher-order functions
that operate mainly on lists.

BMF embraces the transformational approach towards programming.
That is, starting with the most obvious and concise initial solution to a given
specification, without concern for efficiency, successive transformations can
create a more and more efficient program. These transformations are based
on equalities, so are such that the meaning of the program is guaranteed not
to change.

Being much easier to transform than most other programming nota-
tions [3, 4], it is not only very useful for exploring program optimisation
techniques, but also shows promise as a basis for a parallel model. In the
process of parallelising programs, an obvious and concise initial solution,
without concern for parallelism, is transformed into a parallel version [4, 15].

BMF is based on a computational model of categorical data types and
their accompanying operations. The model is suited to developing parallel
software. It is architecture-independent – programs are simply compositions

7



of operations on values of data types – and it is abstract – details of the
operations are hidden. The theory of this model and its parallel application
have been realised [6, 10], so it now needs to become concrete [17].

The basic building blocks of BMF, such as the functions map and re-
duce, have very fast parallel implementations. The sequential map applies a
function to each element of a list. It is inherently parallel, as the function
applications can be performed independently on different processors. The
function reduce converts a list to a single value via an associative binary op-
erator, and can be evaluated on a tree-like structure. It consequently allows
significant parallelism [16].

There has been a significant amount of research exploring strategies for
the parallelisation of BMF constructs [1, 10, 15]. Most of these strategies
have thus far been only manually applied, although some work towards an
automated implementation is currently in progress [10].

3.1.2 The Adl Language Project

This research is a contribution to a body of work that is exploring the ef-
ficient compilation of data-parallel, functional-programming languages to
distributed-memory, parallel architectures [2]. The research of the Adl Lan-
guage Project has embodied:

• the design and formal specification of Adl, a small, polymorphic, non-
recursive, data-parallel language,

• a mathematical formulation of the language’s translation to BMF and
optimisation to more efficient BMF,

• the design and construction of a parallel, distributed-memory abstract
machine to which the compilation process is targeted,

• the development of an executable, natural-semantic description of the
translation into BMF, and an optimiser for the resulting code,

• the development of parallelisation strategies for BMF code.

Adl was implemented purposely as a small functional language to ensure
that BMF code produced from Adl source could be easily manipulated as
a mathematical expression. Its other main characteristic is its support of
data parallelism.

Some built-in higher-order functions are provided, including map, reduce
and scan and variations of reduce and scan with no base value.1 Through
these functions, Adl is primarily designed for the efficient application of
operations over its vector data type; a possibly nested, one-dimensional list

1The base value for a function is the value returned when the input vector is empty.

8



supporting fast random access. Adl also provides the standard selection and
repetition constructs, if and while.

The semantic description of the translation into BMF, followed by opti-
misation, results in BMF code that, in many cases, is close in efficiency to
hand coded BMF programs. These automatically generated programs are
in sequential BMF.

The topic of this project addresses one of a number of areas where inter-
esting research remains to be carried out. Strategies for the parallelisation
of BMF code have been developed and tested, but this is only the prelim-
inary research [1]. Substantial work needs to be undertaken to make these
strategies constructive, that is, embedded in a working implementation.

3.2 Code Transformation

This section introduces the sequential and parallel constructs of the Bird-
Meertens Formalism. It goes on to explain the general process of paralleli-
sation and the desired outcome.

3.2.1 Source Code

Programs to be parallelised are submitted in a functional form of sequential
BMF. The sequential constructs are described in figure 3.1. The source
program should be optimised [1] before being parallelised.

3.2.2 Target Code

The resulting parallelised code will comprise a combination of sequential
and parallel BMF constructs in functional form. The parallel constructs are
described in figure 3.2. Note that this implementation does not currently
make use of splitpairp.

split, denoted ¢|¤p, is the principal distribution construct. It creates a
vector, distributed over p nodes, whose elements are sub-vectors of the input
vector.

parallel reduce by concatenation, ++/‖, is the principal reduction con-
struct. It concatenates distributed sub-vectors onto one node. It is the
inverse of ¢|¤p.

3.2.3 Process

The parallelisation process uses the data parallel model. The aim is to par-
allelise vector data wherever possible. The other allowed data structures are
scalar values and tuples. Scalars are obviously not parallelised. Tuples are
not directly parallelised in this implementation. If a tuple structure contains
vectors at some level, parallelisation of those vectors will be attempted.

9



Construct Description
f∗ B_map applies f to all elements of a vector.
⊕/ B_reduce applies ⊕ to each pair of vector elements.
⊕// B_scan produces a vector of cumulative reductions.
g · h B_comp (composition) produces a composite expression.
# B_length returns the length of a vector.
! B_index returns the ith element of a vector.
Υ B_zip combines two vectors element-wise.

transpose(a,b) B_transpose transposes dimensions a and b of a nested
vector.

nπi B_addr (address) returns the ith element of a tuple.
(f1, . . . , fn)◦ B_alltup applies f1 to fn to copies of the input, pro-

ducing a tuple of the results.
[f1, . . . , fn]◦ B_allvec Applies f1 to fn producing a vector of results.

distl B_distl combines a value with every element of a vec-
tor, producing a vector of tuples.

repeat B_repeat produces a vector containing a specified num-
ber of copies of a value.

select B_select returns elements of one vector, indexed by
the scalar elements of a second.

mask B_mask returns elements of one vector based on the
boolean elements of a second.

priffle B_priffle interleaves two vectors based on the boolean
elements of a third.

id B_id is the identity function.
iota B_iota produces a vector containing integers from 0 to

one less than its input.
if (p) then (c) else (a) B_if applies either c or a based on the evaluation of p.

while (p) do (f) B_while applies f until p evaluates to false.
c B_con denotes a constant value: B_int i, B_real r,

B_true or B_false.
⊕ B_op denotes an operator. Some of the above are oper-

ators, and others include B_conc, B_plus and B_eq.

Figure 3.1: Sequential BMF constructs

10



Construct Description
¢|¤p P_split breaks a vector into p distributed sub-vectors.

splitpairp P_splitpair applies ¢|¤p to two vectors symmetrically.
distl‖ P_distl broadcasts a value to the elements of a distributed

vector.
repeat‖ P_repeat distributes a specified number of copies of a

value.
f∗‖ P_map applies f to distributed sub-vectors.
⊕/‖ P_reduce reduces distributed sub-vectors with ⊕.
⊕//‖ P_scan scans distributed sub-vectors with ⊕.

select‖ P_select distributes elements of one distributed vector,
indexed by the scalar elements of a second.

distpriff‖ P_distpriff produces p distributed vectors of 3-tuples,
containing sub-vectors of 3 input vectors.

⊕ B_op There are also parallel operators, such as P_conc.

Figure 3.2: Parallel BMF constructs

f∗ {f∗ = id · f∗}
⇒ id · f∗ {id = ++/‖ ·¢|¤p}
⇒ ++/‖ ·¢|¤p · f∗ {¢|¤p · f∗ = (f∗) ∗‖ ·¢|¤p}
⇒ ++/‖ · (f∗) ∗‖ ·¢|¤p

Figure 3.3: Parallelisation of map

Starting at the end2 of the program, the aim is to parallelise each con-
struct in turn. This is done by first appending the identity ++/‖ · ¢|¤p to
constructs with vector output [1].

The aim now is to propagate the ¢|¤p through to the start of the pro-
gram, using identities to parallelise sequential constructs. To illustrate, fig-
ure 3.3 shows the parallelisation of a lone map.

The ideal outcome is for the ¢|¤p to move through the entire program,
resulting in an entirely parallelised program. In some cases this is difficult, if
not impossible, to achieve. Some expressions require all data to be reduced
to one node. The aim is to parallelise as much of a program as possible,
even if that means distributing data more than once during the program’s
execution

2The end refers to the left-hand side of the code as it is written down. Similarly, the
start is the right-hand side.

11



3.3 Tools

Given a functional representation of BMF code, the aim is to match each
construct – or composition of constructs – and transform it into it’s parallel
version from a specification.

3.3.1 Haskell

I used the functional language Haskell for the parallelisation of BMF con-
structs [11]. Specifically, I used the Hugs 98 Interpreter [12].

As Haskell is a functional language, the matching is done by evaluation
of expressions. The following expression performs the parallelisation on the
sequential code <seq_code>:

pl <procs> <seq_code>

where <procs> is the number of processors to be used At this stage that is
all the input needed from the user.

Pretty Printer I also developed a simple pretty printer using Haskell and
Perl to convert Haskell expressions into regular BMF strings, viewable as
HTML.

For example, the parallel version of map is, in Haskell:

B_comp
(P_reduce (B_op B_concat))
(B_comp (P_map (B_map F)) (P_split (B_num 4) (B_num 0)))

after conversion using the Haskell pretty printer:

"++/’’.(F)**’’.split%4%"

completed by Perl:

++<font face=symbol>/</font>’’ . <font face=symbol>(</font>F
<font face=symbol>)**</font>’’ . split<font size=1>4</font>

and viewed in HTML:
++/" . (F)∗∗" . split4

3.3.2 Simulator

I had access to a parallel simulator for BMF code, developed by Paul Mar-
tinaitas [13]. I used it to measure the performance of the resulting parallel
code against the original sequential program. It produces a simulation and
subsequent visualisation of parallel BMF code on a virtual architecture.
The detailed simulator models various network topologies with configurable
bandwidth and latency values. It returns raw timings and highly detailed
trace messages.

Section 5 contains the results of experiments using the simulator.

12



Chapter 4

Implementation

The method involves proceeding through the program from left to right, par-
allelising each construct. The more complex functions – aggregates (alltup
and allvec), selection (if) and repetition (while) – are parallelised recursively.
The techniques for these functions are more involved than the others and
consequently require deeper description.

Section 4.1 describes the process of normalising the code before paral-
lelisation begins. Section 4.2 explains the parallelisation of the majority of
the constructs.

Section 4.3 describes the techniques for alltup and allvec. Section 4.4
discusses the need to match and consequently evaluate addresses during par-
allelisation. Section 4.5 describes the techniques for while and if.

4.1 Normalisation

Code can be written in an exponential number of ways. This creates a prob-
lem when trying to match constructs in a certain pattern. Normalisation
reduces this number by making the code predictable. There is no effect on
the meaning of the code, because, as per usual with BMF, normalisation is
a transformation using identities. I normalise the code so that there is only
one (or at most two) expressions that each rule applies to.

4.1.1 Right-Associative Function Compositions

The sequence of expressions is controlled by the binary composition oper-
ator. Because the operator is itself an expression, it is recursive, and can
consequently be nested. The following pieces of code are all identical in
meaning:

B_comp (B_comp A B) (B_comp C x)

B_comp (B_comp A (B_comp B C)) x

B_comp A (B_comp B (B_comp C x)) (4.1)

13



where A, B and C each represent a single BMF function and x represents any
BMF expression.1

I would have to deal with all three scenarios if the code wasn’t nor-
malised. So, before I attempt to parallelise the code, I nest the composition
constructs to the right, as in (4.1). With this normalisation, if I am trying
to match B composed with C, I only have to consider the simple expression:

B_comp B (B_comp C x) (4.2)

4.1.2 The Temporary Sentinel

Another case has to be considered separately:

B_comp B C (4.3)

This occurs when there are no more constructs following C. To avoid
having to add a separate rule for this case, a temporary construct B_TEMP is
composed to the start of the program. The expression (4.3), now becomes:

B_comp B (B_comp C B_TEMP)

which matches (4.2).
The B_TEMP construct is removed after parallelisation during a sweep of

the code. This process is discussed further in section 4.1.5.

4.1.3 Second Pass: While and If Sweep

After normalising compositions, I make a second pass of the code searching
for while and if constructs. I also want to make them as predictable as
possible, as they are the only constructs which impose additional constraints
upon their type.

For while the condition and the body of the loop must accept the same
data type, on the initial and consequent iterations. This demands that the
body of the loop must also output data of this type.

For if constructs, the consequent, alternative and predicate must all
accept the same data type. The consequent and the alternative must also
output data of a corresponding type, which may or may not be the same as
their input.

The method I used to make the constructs predictable was restricting
their possible input and output data types to either a scalar, vector or a
flat2 tuple. I restrict tuples because dealing with one simplified case greatly
decreases the complexity of propagating parallelism. This will become clear
after reading this section, and is further discussed in section 6.7.

1An expression may be a composition of functions. From here on, these definitions for
upper and lower-case letters will be used.

2One that isn’t nested.

14



Identities The following procedure and other parts of this implementation
use the following identities:

(f1, . . . , fn)◦ · x ⇒ (f1 · x, . . . , fn · x)◦

nπi · (f1, . . . , fn)◦ ⇒ fi

The first identity applies the alltup to the construct to which it is composed.
This is called compaction as it compacts two constructs into one. The second
identity simply evaluates the address operator, nπi, returning the ith element
of the tuple.

Tuple Flattening I want to flatten tuples that are nested. Take the
nested alltup:

((f, g)◦, h)◦

I append the following identity to the left of the alltup:

((3π1 , 3π2)◦, 3π3)◦ · (2π1 · 2π1 , 2π2 · 2π1 , 2π2)◦ (4.4)

name it the suffix and denote it S1 · S2. Leaving S1, I compact S2 with the
original alltup, and evaluate the addresses:

((3π1 , 3π2)◦, 3π3)◦ · (f, g, h)◦ (4.5)

which is the desired result.
S1 is simply an alltup with identical structure to the original construct.

Its elements are an enumeration of the addresses nπ1 to nπn, where n is the
total number of expressions in the original construct: 3 in the example.

Compaction I first normalise the elements of the while/if as described in
4.1. Consequently the process described here may be executed recursively.
I then compact any compositions of an alltup with any other construct into
the alltup:

As I recursively compact an element I also use some identities: removing
redundant id constructs, and evaluating addresses.

Neither of these identities should need to be used with the original,
optimised code, but the process of compaction can produce the need for
them. For example:

(f, id)◦ · x ⇒ (f · x, id · x)◦ ⇒ (f · x, x)◦

15



Suffix for if The method for producing the suffix is different for the two
constructs. The if suffix is produced here, but the while suffix is produced
later. The reason for this is explained later in the section.

As previously stated, the structure of S1 is the same as that of the original
alltup expression. It may seem sufficient to copy the structure of either the
consequent or alternative expression, however they may not convey the same
information. For example:

Consequent : ((f · 2π1, g · 2π2)◦, id)◦

Alternative : (id, (x · 2π1, y · 2π2)◦)◦ (4.6)

They both output data of the same type, but the same information cannot be
gained simply by observing their nested alltups. Their respective structures
would be observed as:

( ( ∗ , ∗ ) , ∗ ) and ( ∗ , ( ∗ , ∗ ) )

I need to acquire a unifier for the most general structure that can be
retrieved from combining the two expressions. The output structure of the
example is:

( ( ∗ , ∗ ) , ( ∗ , ∗ ) )

and the identity can be produced as in (4.4). It is then appended to the
start of both expressions. The consequent – and the alternative similarly –
becomes:

((4π1 , 4π2)◦, (4π3 , 4π4)◦)◦ · (f · 2π1 , g · 2π2 , 2π1 , 2π2)◦

To acquire the unifier, I use the following Structure data type:

Structure = Addr | Alltup Int [Structure]

which is analogous to the tuple structure. The integer value is included for
the latter process of counting how many elements are in the structure. It is
initially set to 0.

I observe the two elements simultaneously, by evaluating an expression
that takes them as arguments of a tuple. If both components are an alltup,
the expression creates an Alltup structure and recursively maps itself to the
alltup elements. If only one of the components is an alltup, a dummy vector
of B_NULL values is created for the other, and it proceeds as above. If neither
component is an alltup, an Addr is returned. The process is illustrated in
figure 4.1 for the previous example. s1 represents the expression to be
evaluated. Due to the symmetrical behaviour of the structure, the right-
hand side is not expanded completely for brevity.

The final result has the structure of the unifier. I then populate the
integer count at each level. This is done by again recursing through the

16



s1 ( ((f · 2π1 , g · 2π2)◦, id)◦, (id , (x · 2π1 , y · 2π2)◦)◦ )

⇒ Alltup 0 [s1 ((f · 2π1 ,g · 2π2)◦, id) ,s1 (id, (f · 2π1 , g · 2π2)◦) ]

⇒ Alltup 0 [Alltup 0 [s1 (f,NULL) ,s1 (g, NULL)],[...]]

⇒ Alltup 0 [Alltup 0 [Addr,Addr], Alltup 0 [Addr,Addr]]

Figure 4.1: Tuple flattening: finding the tuple structure

s2 ((2π1,
2π2)◦, (2π1,

2π2)◦)◦

⇒ ++/ [ (· 2π1) ∗ s2 (2π1,
2π2)◦, (· 2π2) ∗ s2 (2π1,

2π2)◦ ]

⇒ ++/ [ (· 2π1) ∗ ·++/ [s2 2π1, s2 2π2], (· 2π2) ∗ ·++/ [s2 2π1, s2 2π2] ]

⇒ ++/ [ (· 2π1) ∗ ·++/ [[2π1], [2π2]], (· 2π2) ∗ ·++/ [[2π1], [2π2]] ]

⇒ ++/ [ (· 2π1) ∗ [2π1,
2π2], (· 2π2) ∗ [2π1,

2π2] ]

⇒ ++/ [ [2π1 · 2π1,
2π2 · 2π1], [2π1 · 2π2,

2π2 · 2π2] ]

⇒ [ 2π1 · 2π1,
2π2 · 2π1,

2π1 · 2π2,
2π2 · 2π2 ]

Figure 4.2: Tuple flattening: building the inverse structure

structure, but leaving an expression at each level to evaluate the count.
This allows the count to be propagated from the peaks back to the base of
the structure. Each count sums the elements nested inside it: 1 for each
Addr, and the corresponding i for each Alltup.

S1 is then created from the Structure. Each Addr is replaced with a
nπi with i one greater than the last. n is the count of the outer Alltup.
The counts on the inner levels keep track of i. In the example, i starts at 3
in the second element, because the first element had a count of 2.

S2 is created by recursing through S1. The following is mapped to each
element i, of the outer alltup of S1. If the element is an alltup itself, the
process is again mapped to the elements, but with the expression {· nπi}
mapped to the result. If the element is not an alltup, a vector of one element
is returned containing nπi. The resulting vectors are concatenated.

Figure 4.2 illustrates the process, again, for the previous example, using
BMF notation. s2 is the expression to be evaluated. The result is a single
vector, which is returned as the argument of a single alltup.

Prefix Appending the suffix flattened the output of the construct. I also
want to flatten the input. The process is the same for both while and if. I

17



find the structure of the input by observing the expressions that act upon
it. The expressions access the structure of the input through compositions
of addresses.

To illustrate, take the consequent from (4.6). The first element contains
a 2π1, hence the input is a tuple of length 2. No other information can be
gathered from the consequent or the alternative. Suppose the predicate of
the if was:

< · ( 0 , 3π1 · 2π2 )◦

The 3π1 provides additional information. The structure becomes:

( ∗ , ( ∗ , ∗ , ∗ ) )

and the identity for the input is:

(4π1 , (4π2 , 4π3 , 4π4)◦)◦ · (2π1 , 3π1 · 2π2 , 3π2 · 2π2 , 3π3 · 2π2)◦

Because this comes before the construct in question I call it the prefix and
denote it P1 · P2.

I use the Structure type again to create P1. Before looking at each
expression, I reverse the associativity of the compositions inside them: nor-
malising from right to left. This is because I am interested in the right-hand
side. If the expression ends in an alltup, I check its elements one by one. If
I observe a address, nπi, I create an Alltup – if I have not already created
one – with n elements: each comprising an Addr. If another address, mπj , is
composed to the first, I repeat the above process inside the jth element of
the existing Alltup.

I then create P1 and P2 using the same process that was used to create
the if suffix.

Suffix for while The reason I did not create the suffix for a while construct
at the same time as for an if is that the former has matching input and output
types. Consequently the suffix is identical to the prefix, and it is redundant
to produce them individually.

Completion For if – and while – I now have:

• if (p) then (S1 · S2 · c) else (S1 · S2 · a) · P1 · P2

• while (p) do (S1 · S2 · f) · P1 · P2

To complete the process, I move S1 outside and P1 inside the construct:

• S1 · if (p · P1) then (S2 · a · P1) else (S2 · c · P1) · P2

• S1 · while (p · P1) do (S2 · y · P1) · P2

Removing S1 leaves the flat S2 · x as in (4.5). Appending P1 to the front
leaves the input flattened and consequently the while/if is now predictable.3

3As defined at the beginning of this section.

18



4.1.4 During parallelisation

The complex BMF constructs can contain compositions in their arguments.
I normalise their arguments as I come across them during parallelisation, not
beforehand. The main reason for this is that the parallelisation process may
cause expressions to be added to these arguments. There is no assurance that
these expressions are composed in the same, predictable way. Hence, they
need to be normalised before continuing. So normalising at the beginning is
redundant.

Also, leaving the B_TEMP construct at the end of each composition se-
quence can result in undesirable side effects; for example when combining
alltup expressions (4.3).

4.1.5 Post-Parallelisation Cleanup

After the parallelisation process is completed for the whole program, or a
complex construct, I ‘sweep’ through, cleaning up the parallelised code. This
process simply involves removing the B_TEMP construct that was appended
during the normalisation process, and also any instance of the expression
++/‖ ·¢|¤p that has not been separated and is still in the code.

4.2 Parallelising Individual Constructs

Most of the BMF constructs are parallelised individually using techniques
described in [1]. These constructs are map, reduce, scan, length, transpose,
zip, select, distl, repeat, mask, priffle and index. For example, figure 3.3 shows
the technique for map.

Sections 4.2.1 to 4.2.3 explain techniques which are non-trivial. These
apply to transpose, zip, mask and select.

4.2.1 Transpose

Two techniques are given for parallelising transpose. The first cannot be
used if the number of nodes is greater than the length of the input vector.
The second can only be used in the scenario where both dimensions of the
vector to be swapped are greater than 0.

I use the second where possible as no communication is involved. The
condition can easily be tested by observing the arguments of the construct.

If the condition fails, I attempt to use the first method. This condition
relies on the input to the program, and consequently must be tested during
run-time. If both conditions fail, the construct is not parallelised.

transposeis not processed in isolation. The placement of ++/‖ and split
constructs depend on whether the parallelisation process continues before
and after the transpose.

19



++/‖ · (transpose(0,1)) ∗‖ ·¢|¤p (a)

if (< · (p , #)◦) then (transpose(0,1)) else (x ·¢|¤p) (b)

if (< · (p , +/‖ · (#)∗‖)◦) then (transpose(0,1) ·++/‖) else (x) ·
(f∗) ∗‖ ·¢|¤p (c)

where x = ++/‖ · ([id]◦) ∗‖ · transpose(0,1)
‖ · (! · (id, 0)◦)∗‖

Figure 4.3: Transpose parallelisation techniques

Figure 4.3 illustrates the process for (a) transpose(1,2), (b) transpose(0,1)

and (c) transpose(0,1) · f∗.

4.2.2 Zip and Mask

The code resulting from the parallelisation of both zip and mask assumes
that the two input vectors were of the same length. It also assumes that,
for some p, multiple applications of ¢|¤p will distribute a vector of length
N symmetrically. This is because the parallel versions of zip (below) and
mask contain two separate applications of ¢|¤p.

++/‖ ·Υ‖ · (Υ) ∗‖ · (¢|¤p · 2π1 , ¢|¤p · 2π2)◦

The vectors need to be distributed symmetrically so that the parallel map,
Υ‖, is evaluated correctly [1].

The splitpair construct would achieve this symmetry, but using it in-
creases the complexity of the parallelisation process. To propagate the par-
allelism, I would have to keep track of two vectors, while trying to move the
splitpair through the code.

4.2.3 Select

The technique for parallelising select is valid, but not ideal. The whole
source vector is broadcast to every node before the selection commences.
The cost of this would tend to outweigh the gains made by parallel compu-
tation. Future techniques will probably use primitives from the underlying
architecture [1].

4.3 Alltup / Allvec

alltup and allvec constructs can act upon any data type. If the input is a
vector, parallelism may be propagated to the end of each element individ-

20



ually, and ultimately out of the construct through common sub-expression
elimination. Section 4.3.2 describes the process.

It is not as simple to eliminate common sub-expressions when they are
arbitrarily nested. This is the case for tuples. The only constructs4 that
can output a tuple which may contain parallelisable vectors are while, if and
alltup.

As explained in section 4.1.3, tuple output from while/if constructs is
flat. Propagating parallelism with a flat tuple as input uses the process as
for vector input, applied to each element. This is described in section 4.3.3.

That leaves only the alltup able to produce arbitrarily nested tuples.
Section 4.3.1 explains the method of compaction which avoids the need for
the more complex propagation.

4.3.1 Compaction

alltups that are composed together are automatically compacted into a single
alltup expression:

(x1, . . . , xn)◦ · (y1, . . . , yn)◦ ⇒ (x1 · (y1, . . . , yn)◦, . . . , xn · (y1, . . . , yn)◦)◦

This is done to simplify the process of propagating the parallisation. Because
the alltup constructs are compacted, I don’t have to propagate parallelism
between them. Issues resulting from this and possible solutions are discussed
in section 6.1.

The same applies for an allvec composed to an alltup:

[x1, . . . , xn]◦ · (y1, . . . , yn)◦ ⇒ [x1 · (y1, . . . , yn)◦, . . . , xn · (y1, . . . , yn)◦]◦

4.3.2 Vector Input

I attempt to parallelise the elements of both alltups and allvecs individually.
Once I can propagate the parallelism no further, the aim, for vector input,
is to try and propagate the splits outside of the construct.

This can only happen if at least one of the elements starts with a split. If
none do, either the input type isn’t a vector, or none of the elements could
be parallelised sufficiently. Figure 4.4 illustrates the process.

To begin, I parallelise each element. I then check whether any of them
now start with a split, by recursing to the inner most composition. If they
do, I want to move them out of the construct. While doing so, I must make
sure that each element is expecting an element of the same distribution. I
move the split outside by performing the replacements in the following table
to the elements (where con is an arbitrary constant):

4id and nπi can as well, but they are not parallelised directly.

21



(id , ¢|¤p · g∗)◦

⇒ (id , (g∗) ∗‖ ·¢|¤p)
◦

⇒ (++/‖ ·¢|¤p , (g∗) ∗‖ ·¢|¤p)
◦

⇒ (++/‖, (g∗)∗‖)◦ · ¢|¤p

Figure 4.4: Processing an alltup with vector input

Ends with Replacement
con con
X ·¢|¤p x

¢|¤p id

x x ·++/‖

This replacement is an identity as follows. For the fourth case in the
table,5 I skip appending the identity ++/‖ · ¢|¤p. This corresponds to the
third line in figure 4.4. Every element now starts with split. I then use
common sub-expression elimination to bring them out of the construct. The
split can now be propagated through the next construct (if it exists).

I propagate the parallelism dependant on only one element ending in
splitȦdvantages and disadvantages of this are discussed in section 6.3.

4.3.3 Following a While/If

Parallelising an alltup/allvec that follows a while or an if, similar to that for
vector input. I want to propagate splits into the while/if. Because these
constructs can output both flattened tuples or vectors,6 I need to check
whether the elements start with either of the following:

1. ¢|¤p

2. ¢|¤p · nπi

I want to produce a predictable construct to propagate into the while/if:
a split or an alltup containing simple elements. If one of the elements of the
alltup/allvec starts with a split I proceed as in section 4.3.2. While checking
for the second case, if an element starts with an alltup/allvec, I recursively
check its elements as well. This is not necessary in the first case, as any split
would already have been propagated.

5To be strictly correct the ++/‖ · ¢|¤p would also be appended in the first case. But
this is trivial as x · c = c for all constants c.

6See section 4.1.3.

22



([¢|¤p · f∗ · 2π1 , 2π1]◦, 2π2)◦

⇒ ([(f∗) ∗‖ ·¢|¤p · 2π1 , 2π1]◦, 2π2)◦

⇒ ([(f∗) ∗‖ ·2π1 , ++/‖ · 2π1]◦, 2π2)◦ · (¢|¤p · 2π1,
2π2)◦

Figure 4.5: Processing an alltup with tuple input

Figure 4.5 is an example of the process for the second case. The input is a
tuple of length n; of which at least one element is a vector. While checking
each element I record each time I come across an instance of ¢|¤p · nπi,
adding each unique i to a set I. I now repeat the same process as for the
vector input above, ∀ i ∈ I. That is, for each i, for any element starting
with nπi, I perform the following replacements:

Ends with Replacement
¢|¤p · nπi

nπi
nπi ++/‖ · nπi

I now compose an alltup whose elements are either ¢|¤p ·nπi or just nπi.
If i is in I it is the former, otherwise it is the latter.

This is the same process as with the vector input, except that I am doing
it for each element of the input tuple.

After propagating a construct via one of the two cases above, it can be
incorporated into the while/if. See section 4.5.

4.4 Address

As explained in 4.1.3, the process of compaction can produce code that needs
addresses to be evaluated. If code is produced such as the following:

nπi · mπj · ((x, y)◦, z)◦

I cannot simply evaluate the right-hand address mπi, because I am trying
to match the whole expression. The example could be extended to include
10 address constructs, and an alltup with corresponding nesting. Therefore
every time I come across a address in the program, I recurse to the right-most
address to see whether it needs to be evaluated.

To do this I create a list to contain the addresses matched. I then check
for either of the following:

1. the list has only one element; the previous construct was a ¢|¤p; and
the next construct is a while or an if,

2. the next construct is an alltup.

23



For the first case, I create an alltup to be incorporated into the while/if,
as in section 4.3.3:

¢|¤p · nπi ⇒ nπi · (nπ1, . . . ,¢|¤p · nπi, . . . ,
nπn)◦

The ¢|¤p can then be propagated through the while/if. See section 4.5.
For the second case, I evaluate the last address that was added. If the

list is still not empty, I repeat the process with the next element.
If none of the cases are matched, and the list has become empty, I com-

pose the previous construct to the next construct and continue with the
parallelisation. If it is not empty, I replace the addresses and start the par-
allelisation afresh at the next construct.

4.5 While/If

Every while and if in the code has predictable input and output types (see
section 4.1.3). I therefore only need to consider three cases when matching
while/if:

1. ¢|¤p · while/if

2. (f1, . . . , fn)◦ · while/if

3. while/if

The alltup in the second case is the result of the process in either section 4.3
or section 4.4. Therefore both the first two cases signify that parallelisation
has continued up to here. The construct on the left is incorporated into
the while/if to propagate the parallelism. The third case signifies that the
parallelisation has to (re)start here.

4.5.1 If

The aim is to parallelise the if elements, move splits to the right, and, if
necessary, any ++/‖ to the left. The third stage may seem unnecessary, but
if the if is inside a while, for example, it is required. The process for the
third case is demonstrated in figure 4.6: a vector is copied into a tuple, of
which, one element is processed depending on the length of the vector.

For the first two cases above, the construct on the left is appended to
both the consequent and alternative. In all three cases, I now follow the
process described in section 4.3.3. The only difference is that the set I
is produced by considering all three components. If an alltup or split is
produced, it is moved outside of the if construct.

The final stage of the process is moving any ++/‖ constructs back out of
the if. If either the consequent or the alternative ends with ++/‖, I move it
out of the if by performing the following replacements to the two elements:

24



(¢|¤p · 2π1 , 2π2)◦ ·
if (> ·(#, 5)◦) then ((id , f∗)◦) else ((g∗, id)◦)

⇒ if (> ·(#, 5)◦) then ((¢|¤p · 2π1 , 2π2)◦ · (id , f∗)◦)
else ((¢|¤p · 2π1 , 2π2)◦ · (g∗, id)◦)

⇒ if (> ·(+/‖ · (#) ∗‖ ·¢|¤p , 5)◦) then ((¢|¤p ,++/‖ · (f∗) ∗‖ ·¢|¤p)
◦)

else (((g∗) ∗‖ ·¢|¤p , id)◦)

⇒ if (> ·(+/‖ · (#)∗‖, 5)◦) then ((id , ++/‖ · (f∗)∗‖)◦) else (((g∗)∗‖ ,++/‖)◦) ·
¢|¤p

⇒ (2π1 , ++/‖ · 2π2)◦ ·
if (> ·(+/‖ · (#)∗‖, 5)◦) then ((id, (f∗)∗‖)◦) else (((g∗)∗‖ , id)◦) ·
¢|¤p

Figure 4.6: Parallelisation of an if construct

Ends with Replacement
++/‖ · x x

++/‖ id
x ¢|¤p · x

If the consequent and alternative end with an alltup, I check whether any
of the elements end with a ++/‖. For each element that does, I proceed the
same as for the vector output above.

4.5.2 While

The process for a while is mainly the same as that applied to an if. A
difference arises because distribution of the input and output types must
be the same. If splits are propagated out of the while, then corresponding
++/‖ constructs must be taken back out to the left. The process for the first
case is illustrated in figure 4.7, where a while performs a map on its second
argument while its first argument is greater than 0.

In the first two cases, the construct on the left is composed to the while
loop. This process must be reversed later to maintain the identity of the
code, because:

¢|¤p · while (x) do (y) 6≡ while (x) do (¢|¤p · y)

In all three cases, if no split has propagated to the start of the while loop
after parallelisation, it has not been parallelised sufficiently. The while is
therefore reverted back to its original form.

25



while ((− · (2π1, 1)◦, f ∗ · 2π2)◦) do (> · (2π1, 0)◦)

⇒ while ((− · (2π1, 1)◦, ++/‖ · (f∗) ∗‖ ·¢|¤p · 2π2)◦) do (> · (2π1, 0)◦)

⇒ while ((− · (2π1, 1)◦, ++/‖ · (f∗) ∗‖ ·2π2)◦) do (> · (2π1, 0)◦)·
(2π1 , ¢|¤p · 2π2)◦

⇒ (2π1 , ++/‖ · 2π2)◦·
while ((− · (2π1, 1)◦, (f∗) ∗‖ ·2π2)◦) do (> · (2π1, 0)◦)·
(2π1 , ¢|¤p · 2π2)◦

Figure 4.7: Parallelisation of a while construct

If at least one has, the split or alltup is moved outside of the construct
as for if.

In the first case, the act of moving the split outside the loop is the inverse
of composing the split to the loop, therefore the identity is maintained:

¢|¤p · while (x) do (y)

⇒ while (x) do (¢|¤p · y)

⇒ while (x′ ·¢|¤p) do (y′ ·¢|¤p)

⇒ while (x′) do (y′) ·¢|¤p

In the second case, there is no assurance that the alltup that was brought
into the loop was identical to the one moved out after parallelisation. There-
fore I compare the two. I denote them F and G respectively. I perform
replacements on the start of the loop elements if the corresponding elements
of F and G differ:

F G Starts with Replacement
¢|¤p · nπi

nπi ¢|¤p · x x

¢|¤p · nπi
nπi x ++/‖ · x

nπi ¢|¤p · nπi ++/‖ · x x
nπi ¢|¤p · nπi x ¢|¤p · x

The third replacement occurs when the element was completely parallelised
in the while. The other three were only partially parallelised – not the ideal
scenario (see section 6.4.2 for further discussion).

To complete the process an alltup is appended to the left of the while
with elements corresponding to the third column in the table: replacing x
with nπi , the new alltup consists of the removed constructs.

In the third case, if the input is a vector, the ++/‖ and split are taken
from each end and appended outside of the while.

26



If the input is a tuple, the process is mainly the same as for the second
case. Let G be previously denoted. ∀ g ∈ G, if g = ¢|¤p · nπi , the following
replacement is made to the ith element of the loop:

Starts with Replacement
++/‖ · x x
x ¢|¤p · x

Again, to complete the process, an alltup is appended to the left of the
while. It is identical to G, except any split is replaced with a ++/‖.

27



Chapter 5

Results

This section presents examples comparing the execution times of sequential
BMF programs and the corresponding code resulting from parallelisation.
The simulator created by Martinaitis [13] was used to produce timings and
visualisations.

The simulator can be configured to model communications on a variety
of distributed architectures. In this instance I used a crossbar topology1

comprising 32 nodes.
Bandwidth and latency were configured to have values of 3ns per byte

and 5000ns respectively. These values are realistic, currently, for an average
speed multiprocessor machine, or a high speed cluster.

5.1 Example 1: Maximum Segment Sum

The first example tests a program which computes the maximum segment
sum (MSS) of a vector. The MSS is the maximum of the sums of any of its
contiguous segments.

The sequential source code has the form:

(4π1) ∗ · ⊕// · f∗

The code comprises three constructs with vector input and output, all of
which can be parallelised individually. Therefore the parallel code comprises
the parallelised version of map twice and of scan. Consequently, the resulting
code is the same as the code produced through manual parallelisation.

I simulated the execution of both the sequential and parallel programs
for various data sizes: 256, 576, 1664 and 3264. Figure 5.1 compares the
time taken to execute the two versions. The sequential time is that for one
processor.

1A crossbar network has full connectivity: all processors can communicate with each
other simultaneously.

28



 0

 2

 4

 6

 8

 10

 12

 0  4  8  12  16  20  24  28  32

E
x
e
c
u

ti
o

n
 T

im
e
 (

u
n

it
s
 x

1
0
,0

0
0
)

Number of Processors

256
576

1664
3264

Figure 5.1: Execution times of MSS for various data sizes

29



Figure 5.2: Execution trace of MSS on 32 nodes

30



Figure 5.3: View of the MSS communications for the parallelised scan

The resultant code comprises parallel select constructs, used in the par-
allelisation of scan. Hence there is non-trivial communication involved be-
tween nodes. This is displayed in figure 5.2, a space-time diagram of the
execution of the parallel code on 32 nodes, with a data size of 3264. Figure
5.3 is a magnification of the scan section of the program, displaying details
of the communication.

Even with this communication, the graph shows that the use of paral-
lelisation can be worthwhile.

5.2 Example 2: Remote Distance

The second example tests a program which calculates the remote distance
for each element of a vector. That is, for each integer element, it returns the
aggregate of the absolute differences between itself and the other elements.

The sequential program has the form:

f ∗ ·Υ · (id, repeat · (id,#)◦)◦

There are no constructs before the length operator, #, so the resulting code

31



 0

 2

 4

 6

 8

 10

 12

 0  4  8  12  16  20  24  28  32

S
p

e
e

d
u

p

Number of Processors

Automated
Optimised

Hand-coded

Figure 5.4: Speedup of Remote Distance parallelisations

includes its parallel version:

+/‖ · (#) ∗‖ ·¢|¤p

I presumed that this piece of code would not be efficient due to the small
amount of work done between distribution and reduction. I therefore simu-
lated the execution of the following:

1. the sequential program,

2. the automatically parallelised code,

3. the automatically parallelised code with the length construct deparal-
lelised, which should result in an optimised version.

4. a hand-coded parallel version.

Figure 5.4 displays the speedup gained for the parallelised versions, with
an input vector of size 320.

The graph shows that this implementation will not always produce the
best parallelised code. Even with the slight optimisation, the automated
code is slower than the hand-written program. It also shows that the paral-
lelisation of a single construct can be inefficient. These points are discussed
further in sections 6.5 and 6.4.1 respectively.

32



 6

 8

 10

 12

 14

 16

 18

 20

 0  4  8  12  16  20  24  28  32

E
x
e
c
u

ti
o

n
 T

im
e
 (

u
n

it
s
 x

1
0
,0

0
0
)

Number of Processors

Figure 5.5: Execution times of the while loop example

5.3 Example 3: While Loop

For the third example, I created an arbitrary sequential program comprising
a simple while loop which repeated 100 times:

while (< · (2π2, 100)◦) do (((+ · (id, 2)◦) ∗ · 2π1,+(id, 1)◦ · 2π2)◦) · (id, 1)◦

I again simulated its execution time, along with the parallel version.
Figure 5.5 shows the results. The input vector had length 1664.

This shows the speedup that can be gained from parallelising the while
construct.

33



Chapter 6

Conclusion / Issues

The implementation of techniques for individual constructs from [1] was
reasonably straightforward. Complexity was introduced by the constructs
that were not directly parallelised: alltup, allvec, address, while and if. The
techniques devised for these constructs, while fairly involved, return simple
and predictable code.

The final product is only a prototype, but is still fairly effective. In many
cases, the automatic parallelisation could produce code that was the same
as a hand-coded program. Through the changes prescribed in sections 6.1
to 6.4, future versions should be able to parallelise more programs to the
same standards.

As well as these changes, there are various areas for possible future work:
section 6.5 discusses the need for knowing the context of a construct; sec-
tion 6.6 considers the possibility of nested parallelisation; and section 6.7
discusses the use of type information.

6.1 Compaction

alltup constructs that are composed together are automatically compacted
(4.3.1). In retrospect, this has undesirable side effects. Consider the simple
example:

(id , id)◦ · (f∗, id)◦

where the second alltup simply creates a copy of its input tuple. Unfortu-
nately in this implementation, the mapping is processed twice as a result of
compaction:

((f∗, id)◦, (f∗, id)◦)◦ (6.1)

This is even more prevalent when an alltup is composed to an arbitrary
construct inside a while or an if (see section 4.1.3).

A better implementation would leave the alltups separate so no repetition
occurs. However, the current implementation may still be acceptable. The

34



speedup gained by distributing vector data onto multiple processors may be
greater than the overhead produced by alltup compaction. The experiments
in section 5 show that speedup can still be achieved.

A further sweep of the code to eliminate common sub-expressions could
also be implemented. After parallelisation (6.1) would look like this:

((++/‖ · (f∗)∗‖,++/‖)◦, (++/‖ · (f∗)∗‖, ++/‖)◦)◦ ·¢|¤p

The inverse compaction sweep could identify the redundancy in the outer
alltup and return:

(id , id)◦ · (++/‖ · (f∗)∗‖, ++/‖)◦ ·¢|¤p

and the problem would be avoided.

6.2 Further Optimisation

The code resulting from the parallelisation process is not optimised. In
essence, the process parallelises each construct individually. A further trans-
formation that optimises the parallel code would be analogous to the opti-
misation techniques in [1].

For example, one simple optimisation is the combination of parallel maps
that may end up composed together. This will occur in the following exam-
ple where a reduce is compose to a map:

⊕/ · f∗ ⇒ ⊕/‖ · (⊕/) ∗‖ · (f∗) ∗‖ · ¢|¤p

An optimised solution would be:

⊕/‖ · (⊕/ · f∗) ∗‖ · ¢|¤p

6.3 Propagating Multiple Split Constructs

I propagate parallelism through alltup/allvec constructs dependant on only
one element ending in split. This may mean that n−1 copies and reductions
are applied for little or no gain. Take the example below:

(f∗, id)◦

The input is copied for the two elements, but only one of the copies is
processed. This implementation produces the code:

(++/‖ · (f∗)∗‖, ++/‖)◦ ·¢|¤p

The problem here is that the process is not technically eliminating common
split constructs, because the split is not common! If this was the complete

35



program, the copy and extra reduction is completely overhead. In this case
a better result would be to simply to leave the split inside the alltup.

However, this is a case by case problem. If the alltup was composed to
an initial map, the overhead may be offset by the parallel computation:

(++/‖ · (f∗)∗‖, ++/‖)◦ · (g∗) ∗‖ ·¢|¤p

During a further optimisation stage, it would be beneficial to remove
such overheads. Any instance where a ++/‖ and a ¢|¤p are separated by
the end of an alltup should be removed.

The more complex example where there are more than two elements:

(++/‖ · x,++/‖ · y, ++/‖)◦ ·¢|¤p

could be solved easily using a second alltup:

(++/‖ · x · 2π1,++/‖ · y · 2π1,
2π2)◦ · (¢|¤p , id)◦

6.4 Reduction and Redistribution

If data is unavoidably reduced to one node for some reason, the paralleli-
sation can restart at the next construct. Consequently, data may be dis-
tributed again.

6.4.1 Unwarranted Parallelism

The experiment discussed in section 5.2 deals with a program which starts
with the alltup:

(id, repeat · (id,#)◦)◦

The parallelisation of this code results in the expression:

(id, x · (y ·++/‖, ¢|¤p · iota ·+/‖ · (#)∗‖)◦)◦ ·¢|¤p

First of all, the code introduces unnecessary overheads as described in
section 6.3. Assuming that this overhead was removed, the code will contain
the expression:

+/‖ · (#) ∗‖ ·¢|¤p

The parallelisation of the single construct, length, is not beneficial. The
results from the aforementioned experiment show that leaving the construct
to be processed on one node is faster.

In other circumstances it might be perfectly reasonable to parallelise
length, when the corresponding vector is already distributed. So we cannot
ignore the parallelisation of length altogether.

36



Besides, the fact that there is a parallel map of length is not the complete
issue here. The problem is that there is not enough computation between
the reduce and the split to warrant parallelism.

One solution could involve the user placing flags around expressions that
they did not feel warranted parallelism. For example: X1 · # · X2. The
implementation could ignore the expression inside the constructs X1 and
X2. This may, however, need the user to have knowledge of some of the
parallelisation process.

Another solution could take place during optimisation after paralleli-
sation. The process could observe the type of computation between each
reduce and split and decide whether it justifies parallelism. If it doesn’t, the
expression could be re-sequentialised1. This would be especially appropriate
if the expression was a single map, such as above, because the parallelisation
was simple and consequently its inverse would be as well.

6.4.2 Inside While Constructs

If a while construct looked something like:

while (x) do (iota · ⊕/)

it would be parallelised as:

++/‖ · while (x′) do (¢|¤p · iota · ⊕/‖ · (⊕/)∗‖) ·¢|¤p

because the loop expression started with a ¢|¤p. Every time around the
loop, the data is reduced and then redistributed. This example is arbitrary
and obviously would not be implemented, but it shows that parallelising
only part of the loop will lead to very inefficient code. The first solution
presented in section 6.4.1 would solve this problem.

6.5 Locality

The techniques presented in [1] were applied to constructs in isolation.
Knowledge of the locality of a construct may help to optimise the resultant
code. For example, the parallelised form of repeat includes the expression:

¢|¤p · iota · 2π2 (6.2)

whose soul purpose is to create a distributed vector of length equal to the
number of copies to be made. The elements of the vector are arbitrary, as
they are not accessed. Example 3 in section 5.2, which is also discussed in
section 6.4.1, comprises the sequential code:

repeat · (id,#)◦ (6.3)
1Returned to its original form.

37



The expression corresponding to (6.2) in the resulting parallel program is:

¢|¤p · iota ·+/‖ · (#) ∗‖ ·¢|¤p

The code finds the length n of the input vector, so it can create a vector
of size n. Obviously the process is redundant and the expression can be
replaced with:

¢|¤p

However, to implement this replacement in the paralleliser, there must
be an attempt to match the code in (6.3). But how often does this case
occur? There are probably many more special cases like this, some that are
rare, and some that occur frequently. It would be impossible to add them
all to the paralleliser. I suggest that only those that occur with the highest
frequency are added, and the others would have to be ignored.

6.6 Non-Recursive Parallelisation

Programs that comprise nested vector operations can exploit nested paral-
lelism. The program from in section 5.2 contains such an operation:

(+/ · (g∗) · distl)∗

The outer map is simply parallelised. The mapped expression can also be
parallelised, because it too, is applied to vector input. Alexander [1] shows
that there are benefits to exploiting both levels of parallelism.

For simplicity, this version of the paralleliser implements non-recursive
parallelism. Future implementations can incorporate multiple levels of par-
allelism to attempt to increase performance.

6.7 Type Information

The paralleliser currently uses no type information, other than that which
can be derived from observing the constructs that are applied. To parallelise
the majority of constructs, this is all that is needed.

However, I thought that it could be beneficial to incorporate type infor-
mation into the program, to help with the constructs that aren’t directly
parallelised. The reason for compacting alltup/allvec constructs and flatten-
ing the input and output of while and if, was to make them predictable: to
make it simple to propagate parallelism. I felt that techniques to propagate
distributed vectors at arbitrary levels of a tuple would be a lot higher in
complexity than those that I eventually implemented.

Having type information may be a useful feature when designing these
techniques. Instead of having to work out the structure of the data, it would
already be known.

38



However, my implementation does show that it is not necessary. In this
case, I think that any benefits are outweighed by the overhead created by
adding it.

There is scope to use type information if a stronger need arises in later
versions.

39



Bibliography

[1] Alexander, B., Mapping a Functional Language to a Data-Parallel Model
of Computation, Chapters 5-6. To be published.

[2] Alexander, B., Engelhardt, D., Wendelborn, A., An Overview of the
Adl Language Project. In Proceedings Conference on High Performance
Functional Computing, pp. 73-82, April 1995.

[3] Backhouse, R., An Exploration of the Bird-Meertens Formalism. Techni-
cal Report CS 8810, Department of Computer Science, Groningen Uni-
versity, 1988.

[4] Gibbons, J., An Introduction to the Bird-Meertens Formalism. In Pro-
ceedings of the New Zealand Formal Program Development Colloquium,
Nov.1994.

[5] Gorlatch, S., Abstraction and Performance in the Design of Parallel Pro-
grams. In Acta Informatica, Vol 36, No 9/10, pp. 761-803, 2000.

[6] Gorlatch, S., Towards Formally-Based Design of Message Passing Pro-
grams. In Software Engineering, Vol 26, No 3, pp. 276-288, 2000.

[7] Hu, Z., Sun, Y., Functional Approach to the Synthesis of Systolic Arrays
In Proceedings of 2nd International Conference for Young Computer Sci-
entists, 1991.

[8] Hu, Z., Iwasaki, H., Takeichi, M., Construction of List Homomorphisms
by Tupling and Fusion. In 21st International Symposium on Mathemat-
ical Foundations of Computer Science, LNCS 1113, pp. 407-418, 1996.

[9] Hu, Z., Iwasaki, H., Takeichi, M., Formal Derivation of Efficient Paral-
lel Programs by Construction of List Homomorphisms. In ACM Trans-
actions on Programming Langauges and Systems, 19(3), pp. 444-461,
1997.

[10] Hu, Z., Takeichi, M., Chin, W.N., Parallelization in Calculational
Forms. In Symposium on Principles of Programming Languages, pp. 316-
328, 1998.

40



[11] Jones, S.P., Haskell 98 Language and Libraries. Cambridge University
Press, 2003.

[12] Jones, M.P., Peterson, J.C., Hugs 98: A functional programming system
based on Haskell 98. Oregon Graduate Institute of Science and Technol-
ogy, 1999.

[13] Martinaitas, P., The Simulation and Visualisation of Parallel BMF
Code. Department of Computer Science, University of Adelaide, 1998.

[14] McGraw, J., Sisal: Streams and Iteration in a Single Assignment Lan-
guage. Language Reference Manual, Lawrence Livermore National Lab-
oratory.

[15] Roe, P., Derivation of Efficient Data Parallel Programs. In Proceed-
ings of the 17th Australasian Computer Science Conference, pp. 621–628,
1994.

[16] Skillicorn, D.B., The Bird-Meertens Formalism as a Parallel Model. In
Software for Parallel Computation, Vol 106, 1993

[17] Skillicorn, D.B., Questions and Answers about Categorical Data Types.
In Proceedings of Meeting on Bulk Data Types for Architecture Indepen-
dence, May 1994.

[18] Skillicorn, D.B., Foundations Of Parallel Programming. Cambridge
University Press, 1994.

[19] Skillicorn, D.B., Cai, W., A Cost Calculus for Parallel Functional Pro-
gramming. In Journal of Parallel and Distributed Computing, Vol 28 No
1, pp. 65-83, 1995.

[20] Sun, Y., Hu, Z., Algebraic Approach to the Synthesis of Systolic Arrays.
In Proceedings of 2nd German-Chinese Electronics Congress, Germany,
1991.

[21] Walinsky, C., Banerjee, D., A Data-Parallel FP compiler. In Journal of
Parallel and Distributed Computing, Vol 22, No 2, pp. 138-153, 1994.

[22] Yoshiyuki Onoue, Zhenjiang Hu, Hideya Iwasaki, Masato Takeichi, A
Calculational Fusion System HYLO. In Algorithmic Languages and Cal-
culi, pp. 76-106, 1997.

41



Appendix A

Paralleliser Code

module BMF where

data B_exp = B_comp B_exp B_exp | B_TEMP | B_NULL |
F | G | H | X | Y | Z | -- arbitrary fns
B_op Op | B_id |
B_map B_exp | B_reduce B_exp B_exp | B_scan B_exp |
B_alltup [B_exp] | B_allvec [B_exp] |
B_con Con | B_num Int | B_addr B_exp B_exp |
B_if B_exp B_exp B_exp | B_while B_exp B_exp |

P_map B_exp | P_reduce B_exp | P_scan B_exp |
P_split B_exp B_exp | P_splitpair B_exp B_exp |
P_distpriff B_exp B_exp deriving Show;

data Op = B_index | B_transpose Int Int | B_repeat |
B_plus | B_minus | B_times | B_divide |
B_and | B_or | B_eq | B_neq | B_gt | B_lt | B_ge |
B_iota | B_myinitseg | B_conc |
B_length | B_uminus | B_neg | B_distl | B_select |
B_zip B_exp | B_mask | B_priffle |

P_transpose Int Int | P_zip B_exp | P_distl |
P_conc | P_repeat | P_select
deriving Show;

data Con = B_int Int | B_real Float | B_true | B_false
deriving Show;

-- data type for finding structure (int is to count elements)
data Structure = Addr | Alltup Int [Structure] deriving Show;

42



-- INITIALISE --
----------------

pl :: Int -> B_exp -> B_exp
pl s x = pll (B_num s,B_num 0) x

pll :: (B_exp,B_exp) -> B_exp -> B_exp
pll d x = sweep (append d (norm x))

-- append: start parallisation
append :: (B_exp,B_exp) -> B_exp -> B_exp
append d B_TEMP = B_TEMP

-- while and if
append d (B_comp (B_while lp chk) x)

= insideWhIf d B_NULL [pll d lp] [chk,lp] x
append d (B_comp (B_if cnd thn els) x)

= insideWhIf d B_NULL (map (pll d) [thn,els]) [cnd,thn,els] x

-- these operators are not parallelised at all
append d (B_comp(B_op B_plus) x) = B_comp(B_op B_plus)(append d x)
append d (B_comp(B_op B_minus) x) = B_comp(B_op B_minus)(append d x)
append d (B_comp(B_op B_times) x) = B_comp(B_op B_times)(append d x)
append d (B_comp(B_op B_divide) x)=B_comp(B_op B_divide)(append d x)
append d (B_comp(B_op B_and) x) = B_comp(B_op B_and) (append d x)
append d (B_comp(B_op B_or) x) = B_comp(B_op B_or)(append d x)
append d (B_comp(B_op B_eq) x) = B_comp(B_op B_eq)(append d x)
append d (B_comp(B_op B_neq) x) = B_comp(B_op B_neq) (append d x)
append d (B_comp(B_op B_gt) x) = B_comp(B_op B_gt)(append d x)
append d (B_comp(B_op B_lt) x) = B_comp(B_op B_lt)(append d x)
append d (B_comp(B_op B_uminus) x)=B_comp(B_op B_uminus)(append d x)
append d (B_comp(B_op B_neg) x) = B_comp(B_op B_neg)(append d x)
append d (B_comp(B_op B_myinitseg) x)

= B_comp (B_op B_myinitseg) (append d x)

-- not parallelised directly
append d (B_comp (B_addr a b) x) = p d (B_comp (B_addr a b) x)
append d (B_comp (B_alltup fs) x) = p d (B_comp (B_alltup fs) x)
append d (B_comp (B_allvec fs) x) = p d (B_comp (B_allvec fs) x)
append d (B_comp (P_split s t) x) = p d (B_comp (P_split s t) x)

-- transpose has its own setup (with if)
append d (B_comp (B_op (B_transpose a b)) x)
= transPll d True (a,b) x

-- the rest can have the identity appended!
append d x = B_comp redConc (p d (B_comp (split d) x))

43



-- normalise

norm x = whIfSwp (n x)

n :: B_exp -> B_exp
n (B_comp (B_comp x y) z) = n (B_comp x (B_comp y z))
n (B_comp x y) = B_comp x (n y)
n B_TEMP = B_TEMP
n x = B_comp x B_TEMP

-- BODY --
----------

p :: (B_exp,B_exp) -> B_exp -> B_exp

-- con

p d (B_comp x (B_comp (B_con a) y)) = B_comp x (B_con a)

-- addr

p d (B_comp (B_addr l i) x) = addrSwp d B_NULL (B_addr l i) x
p d (B_comp x (B_comp (B_addr l i) y)) = addrSwp d x (B_addr l i) y

-- id

p d (B_comp x (B_comp B_id y)) = p d (B_comp x y)
p d (B_comp B_id (B_comp x y)) = p d (B_comp x y)

-- map

p d (B_comp (P_split s t) (B_comp (B_map a) x))
= B_comp (P_map (B_map a)) (p d (B_comp (P_split s t) x))

-- reduce

p d (B_comp x (B_comp (B_reduce a b) y))
= B_comp

x
(B_comp

(P_reduce a)
(B_comp

(P_map(B_reduce a b))
(p d (B_comp (split d) y))))

44



-- scan

p d (B_comp (P_split s t) (B_comp (B_scan a) x))
= B_comp

(g a)
(B_comp

(B_alltup[
B_comp (P_scan a) (B_comp myinit (P_map mylast)),
B_id])

(B_comp
(P_map(B_scan a))
(p d (B_comp (P_split s t) x))))

-- length

p d (B_comp x (B_comp (B_op B_length) y))
= B_comp

x
(B_comp

(P_reduce (B_op B_plus))
(B_comp

(P_map (B_op B_length))
(p d (B_comp (split d) y))))

-- transpose

p d (B_comp (P_split s t) (B_comp (B_op (B_transpose a b)) x))
= transPll d False (a,b) x

-- zip

p d (B_comp (P_split s t) (B_comp (B_op (B_zip a)) x))
= B_comp

(P_map (B_op (B_zip a)))
(B_comp

(B_op (P_zip a))
(p d (B_comp (addAT (P_split s t) 2) x)))

-- select

p d (B_comp (P_split s t) (B_comp (B_op B_select) x))
= B_comp (P_map (B_op B_select)) (sOrD d x)

-- distl

p d (B_comp (P_split s t) (B_comp (B_op B_distl) x))
= B_comp (P_map (B_op B_distl)) (sOrD d x)

45



-- repeat

p d (B_comp (P_split (B_num s) t) (B_comp (B_op B_repeat) x))
= B_comp

(P_map (B_comp
(B_op B_repeat)
(B_alltup[

ad 2 1,
B_comp (B_op B_length) (ad 2 2)])))

(B_comp
(B_op (P_zip zipArg))
(p d (B_comp

(B_alltup[
B_comp

(B_op P_repeat)
(B_comp

(B_alltup[B_id,B_con (B_int s)])
(ad 2 1))

,
B_comp

(split d)
(B_comp

(B_op B_iota)
(ad 2 2))])

x)))

-- mask

p d (B_comp (P_split s t) (B_comp (B_op B_mask) x))
= B_comp (P_map (B_op B_mask))

(B_comp
(B_op (P_zip zipArg))
(p d (B_comp (addAT (P_split s t) 2) x)))

-- index

p d (B_comp x (B_comp (B_op B_index) y))
= B_comp

x
(B_comp

(B_op B_index)
(B_comp

(B_alltup[
B_comp (B_op B_index) (B_alltup[ad 2 1, jgen]),
kgen])

(p d (B_comp
(B_alltup[B_comp (split d) (ad 2 1), ad 2 2])
y))))

46



-- priffle

p d (B_comp (P_split s t) (B_comp (B_op B_priffle) x))
= B_comp

(P_map (B_op B_priffle))
(p d (B_comp (P_distpriff s t) x))

-- alltup

-- compact consecutive alltups
p d (B_comp (B_alltup fs) (B_comp (B_alltup gs) x))

= p d (B_comp (B_alltup (map (revComp (B_alltup gs)) fs)) x)

-- look at next construct
p d (B_comp (B_alltup fs) x) = rejAT (insideA d (map (pll d) fs) x)

-- allvec

-- compact allvec with alltup
p d (B_comp (B_allvec fs) (B_comp (B_alltup gs) x))

= p d (B_comp (B_allvec (map (revComp (B_alltup gs)) fs)) x)

-- look at next construct
p d (B_comp (B_allvec fs) y) = rejAV (insideA d (map (pll d) fs) y)

-- if
-- parallelise if

p d (B_comp x (B_comp (B_if cnd thn els) y))
= insideWhIf d x

(map (spn d) (map (B_comp x) [thn,els]))
[cnd,thn,els] y

-- while
-- attempt to parallelise while

p d (B_comp x (B_comp (B_while lp chk) y))
= insideWhIf d x [spn d (B_comp x lp)] [lp,chk] y

-- REPEAT & CLEANUP --
----------------------

-- multiple parallel sections (redistributions)
p d (B_comp (P_split s t) (B_comp x (B_comp y z)))

= B_comp (P_split s t) (B_comp x (append d (B_comp y z)))
p d (B_comp (P_split s t) x) = B_comp (P_split s t) x
p d (B_comp x y) = append d (B_comp x y)
p d x = x

47



-- The temporary function is removed

sweep (B_comp (P_reduce a) (B_comp (P_split s t) x)) = sweep x
sweep (B_comp x B_TEMP) = x
sweep B_TEMP = B_id
sweep (B_comp x y) = B_comp x (sweep y)
sweep x = x

-- EXTRA METHODS --
-------------------

-- Convenience functions
ad l i = B_addr (B_num l) (B_num i)
split (s,t) = P_split s t
redConc = P_reduce (B_op B_conc)
zipArg = B_alltup[ad 2 1, ad 2 2]

sOrD d x
= (B_comp

(B_op P_distl)
(p d (B_comp (B_alltup[ad 2 1,B_comp (split d) (ad 2 2)]) x)))

-- create general alltup with specified extra construct
addAT x l = B_alltup (addAT2 x (map (ad l) [1..l]))
addAT2 B_NULL y = y
addAT2 x y = map (B_comp x) y

-- normalise, parallelise and sweep - no append
spn d f = sweep (p d (norm f))

-- transpose functions --

-- check whether number of nodes < length of input
transIf (B_num s, B_num t)

= B_comp (B_op B_lt) (B_alltup[B_con(B_int s),B_op B_length])

-- check whether split was propagated further,
-- if not put it back in alternative

checkDist d (B_comp iff (B_comp (P_split s t) x))
= B_comp iff x

checkDist d (B_comp (B_if cnd thn els) x)
= B_comp

(B_if (remSplit (pll d cnd))
(B_comp thn redConc)
(remSplit els))

x
-- and remove reduce from consequent

remThnConc (B_comp splt (B_comp trans conc)) = B_comp splt trans

48



-- does pll start with the transpose?
tPllStart True x y = y
tPllStart False x y = B_comp x y

-- transpose
transPll d add (a,b) x
| m==0 = checkDist d

(B_comp
(B_if

(transIf d)
(tPllStart add

(split d)
(B_op (B_transpose a b)))

(tPllStart (not add)
redConc
(B_comp

(P_map (B_allvec[B_id]))
(B_comp

(B_op (P_transpose a b))
(B_comp

(P_map (B_comp (B_op B_index)
(B_alltup[B_id,B_con (B_int 0)])))

(split d))))))
(p d (B_comp (split d) x)))

| m>0 = tPllStart add
redConc
(B_comp

(P_map (B_map (B_op (B_transpose (a-1) (b-1)))))
(p d (B_comp (split d) x)))

where m=minimum[a,b]

-- move splits from inside alltups/allvecs/if/while to ouside --
----------------------------------------------------------------

-- rejoining expressions
rejAT (fs,x) = B_comp (B_alltup fs) x
rejAV (fs,x) = B_comp (B_allvec fs) x

rejoin d (fs,B_NULL) x = (fs, append d x)
rejoin d (fs,splt) x = (fs, p d (B_comp splt x))

rejWhIf :: ([B_exp],B_exp) -> B_exp
rejWhIf ([chk,lp],x) = B_comp (B_while lp chk) x
rejWhIf ([cnd,thn,els],x) = B_comp (B_if cnd thn els) x

49



-- match while/if
insideA d fs (B_comp (B_while lp chk) x) = atWhIf d fs [chk,lp] x
insideA d fs (B_comp (B_if cnd thn els) x)
= atWhIf d fs [cnd,thn,els] x
insideA d fs x = rejoin d (insideA2 d False fs) x

-- did we have a split?
insideA2 d cont pfs = condMoveA d cont (endSplits pfs) pfs
condMoveA d cont rem fs

| rem = (map remSplit fs,split d) -- yes
| not cont = (fs,B_NULL) -- no
| cont = condMoveA2 d (endAS fs) fs -- no, split.addr?

-- did we have split.addr?
condMoveA2 d [] fs = (fs,B_NULL) -- no
condMoveA2 d bs fs = (map (remAS bs) fs, compAS d bs) -- yes

-- look for split.addr
atWhIf d fs attr x = atWhIf2 d (insideA2 d True fs) attr x

-- anything to propagate?
atWhIf2 d (fs,B_NULL) attr x = (fs, p d (rejWhIf (attr,x))) -- no
atWhIf2 d (fs,add) attr x = (fs, preWhIf d add attr x) -- yes

-- evaluate address
addrAT (B_num i) fs y = n (B_comp (fs !! (i-1)) y)

-- push split into whif, creating vector with one true
addrWhIf d l i attr x = B_comp(B_addr l i)(addrWhIf2 d l i attr x)
addrWhIf2 d (B_num l) (B_num i) attr x

= preWhIf d (compAS d (setTrue i (replicate l False))) attr x

-- add to the inner elements & push through
preWhIf d add attr x

= insideWhIf d add (map (spn d) (map (B_comp add) (tail attr))) attr x

-- insideWhIf: check whether splits have been pushed through
insideWhIf d add pAttr attr x

= condMoveWhIf d add
(insideA2 d True (pll d (head attr):pAttr)) attr x

condMoveWhIf d add (pAttr,B_NULL) attr x -- was not pushed through
= add1 add (rejWhIf (attr, append d x))

condMoveWhIf d B_NULL (pAttr,pushd) attr x -- pushed through, no suffix
= noSuffMoveAT d pAttr pushd (p d (B_comp pushd x))

condMoveWhIf d add (pAttr,B_alltup gs) attr x -- pushed through with alltup
= suffMoveAT d add pAttr gs (p d (B_comp (B_alltup gs) x))

50



condMoveWhIf d add (pAttr,splt) attr x -- pushed through with split
= rejWhIf (pAttr, p d (B_comp splt x))

noSuffMoveAT d [chk,lp] (B_alltup gs) x -- pushed with alltup, while
= B_comp

(B_alltup (map add2 gs))
(B_comp (B_while (remConcAT d gs lp) chk) x)

noSuffMoveAT d [chk,lp] splt x -- pushed with split, while
= B_comp redConc (B_comp (B_while (remConc d (compNorm lp)) chk) x)

noSuffMoveAT d (cnd:thnels) pushd x -- pushed, if
= noSuffIf d cnd(map compNorm thnels) x

-- see whether i can move reduce\concat out the front

noSuffIf d cnd [B_alltup thn,B_alltup els] x -- have tuple input
= noSuffIfAT d cnd (map B_alltup [thn,els])

(unzip (map (tupOr (length thn))
(zip3 (ifConcs thn) (ifConcs els) [1..(length thn)])))

x

noSuffIf d cnd thnels x -- have vector input
= noSuffIfVec d cnd thnels (and (map ifConc thnels)) x

-- moved concs?
noSuffIfAT d cnd thnels (bs,concs) x

| b = B_comp (B_alltup concs)
(rejWhIf ((cnd:map (remConcAT d concs) thnels),x))

| not b = rejWhIf ((cnd:thnels),x)
where b=(or bs)

-- moved conc?
noSuffIfVec d cnd thnels b x

| b = B_comp redConc (rejWhIf (cnd:map (remConc d) thnels,x))
| not b = rejWhIf((cnd:thnels),x)

-- it is the same either way for if
-- (doesn’t matter if stuff was brought in or not)

suffMoveAT d add [cnd,thn,els] gs x
= noSuffMoveAT d [cnd,thn,els] B_NULL x

-- while: fs is tuple brought in, gs is the one to be taken out
suffMoveAT d (B_alltup fs) [chk,lp] gs x

= suffMoveAT2 d (unzip3 (map unifyATs (zip fs gs))) chk lp x

51



-- complete concs are out, splits are out.
suffMoveAT2 d (bs,bs2,gs) chk (B_alltup lp) x
| b = B_comp (B_alltup gs)

(rejWhIf([chk,B_alltup(map(doConcs d)(zip3 bs bs2 lp))],x))
| not b = rejWhIf ([chk,B_alltup lp],x)
where b=(or bs)

-- for if: end in reduce/conc?
ifConcs fs = map ifConc fs
ifConc (B_comp (P_reduce (B_op B_conc)) x) = True
ifConc (P_reduce (B_op B_conc)) = True
ifConc x = False

-- or operator for tuple
tupOr l (a,b,i)

| aorb = (True,B_comp redConc (ad l i))
| not aorb = (False,ad l i)
where aorb=(a||b)

-- match up concs and splits going out for while
unifyATs (B_comp (P_split s t) x , B_comp (P_split u v) y)

= (False,False,x)
unifyATs (B_comp (P_split s t) x , y)

= (True,True,B_comp (P_split s t) x)
unifyATs (x , B_comp (P_split u v) y)

= (True,False,B_comp redConc x)
unifyATs (x,y) = (False,False,x)

-- create list of concs\splits to be appended
doConcs d (False,f, x) = x
doConcs d (t,True, B_comp (P_split u v) x) = x
doConcs d (t,True, x) = B_comp redConc x
doConcs d (t,False, B_comp (P_reduce (B_op B_conc)) x) = x
doConcs d (t,False, x) = B_comp (split d) x

-- conditional composition
add1 B_NULL x = x
add1 x B_NULL = x
add1 add x = B_comp add x

-- another conditional composition used for appending concs
add2 (B_comp s g) = B_comp redConc g
add2 g = g

-- remove concs from alltup
remConcAT d gs (B_alltup fs)

= B_alltup (map (remConcATs d) (zip gs fs))
remConcAT d gs x = x
remConcATs d (B_comp s g, f) = remConc d f
remConcATs d (g, f) = f

52



-- remove single conc
remConc d (P_reduce (B_op B_conc)) = B_id
remConc d (B_comp (P_reduce (B_op B_conc)) x) = x
remConc d x = B_comp (split d) x

-- check for split
endSplits :: [B_exp] -> Bool
endSplits fs = endSplt2 fs False

endSplt2 [] q = q
endSplt2 (P_split s t :fs) q = endSplt2 fs True
endSplt2 (B_comp x y :fs) q = endSplt2 (y:fs) q
endSplt2 (B_addr l i :fs) q = False
endSplt2 (f:fs) q = endSplt2 fs q

-- remove split
remSplit :: B_exp -> B_exp
remSplit B_id = redConc
remSplit (B_con a) = B_con a
remSplit (P_split a b) = B_id
remSplit (B_comp x (P_split a b)) = x
remSplit (B_comp x y) = B_comp x (remSplit y)
remSplit x = B_comp x redConc

-- check for split.addr
endAS fs = endAS2 fs []
endAS2 [] bs = bs
endAS2 (B_comp (P_split s t) (B_addr (B_num l) (B_num i)) :fs) bs

| bs/=[] = endAS2 fs (setTrue i bs)
| bs==[] = endAS2 fs (setTrue i (replicate l False))

endAS2 (B_comp x y :fs) bs = endAS2 (y:fs) bs
endAS2 (B_alltup gs :fs) bs = endAS2 (gs++fs) bs
endAS2 (B_allvec gs :fs) bs = endAS2 (gs++fs) bs
endAS2 (x:fs) bs = endAS2 fs bs

-- remove split.addr
remAS bs (B_comp (P_split s t) (B_addr l i)) = B_addr l i
remAS bs (B_comp x y) = B_comp x (remAS bs y)
remAS bs (B_addr l (B_num i))

| b = B_comp redConc (B_addr l (B_num i))
| not b = B_addr l (B_num i)
where b = bs !! (i-1)

remAS bs (B_alltup gs) = B_alltup (map (remAS bs) gs)
remAS bs (B_allvec gs) = B_allvec (map (remAS bs) gs)
remAS bs x = x

53



-- create alltup with splits where appropriate
compAS d bs = B_alltup (map (compAS2 d (length bs))

(zip bs [1..(length bs)]))
compAS2 d l (b,i)

| b = B_comp (split d) (ad l i)
| not b = ad l i

-- sets idx element of vector to true
setTrue :: Int -> [Bool] -> [Bool]
setTrue idx (b:bs)

| idx==1 = [True]++bs
| idx> 1 = [b]++(setTrue (idx-1) bs)

-- while/if: parallelisation --
-- need to normalise, add TEMP and sweep

whIfSwp (B_comp (B_while lp chk) x)
= whIfSwp2 (map compNorm [lp,chk]) x

whIfSwp (B_comp (B_if cnd thn els) x)
= ifSwp1 (map compNorm [cnd,thn,els]) x

whIfSwp (B_comp x y) = B_comp x (whIfSwp y)
whIfSwp x = x

-- produce if suffix
ifSwp1 attr x = ifSwp2 (suffix (tail attr)) attr x
ifSwp2 suff attr x = add1 suff (ifSwp3 (prefix suff) attr x)
ifSwp3 pref (a:attr) x

= whIfSwp2 (a: map compNorm (map (add1 pref) attr)) x

-- get structure of input
whIfSwp2 attr x = whIfSwp3 (map revNorm attr) x
whIfSwp3 attr x = whIfSwp4 (getStruct attr) attr x

-- put prefix inside construct
whIfSwp4 str attr x

= whIfSwp5 str (map revSwp (map (repStruct str) attr))
(add1 (prefix str) x)

-- while loop still to be flattened - complete!
whIfSwp5 str [lp,chk] x = add1 str (rejWhIf ([chk, flatten lp],x) )
whIfSwp5 str attr x = rejWhIf (attr,x)

54



-- compact and normalise

compNorm lp = sweep (compact (norm lp))

-- remove id
compact (B_comp x (B_comp B_id y)) = compact (B_comp x y)
compact (B_comp B_id (B_comp x y)) = compact (B_comp x y)

-- compact!
compact (B_comp (B_alltup fs) x)

= B_alltup (map compNorm (map (revComp x) fs))

-- evaluate addresses
compact (B_comp (B_addr l i) x) = addrComp B_NULL (B_addr l i) x
compact (B_comp x (B_comp (B_addr l i) y))

= addrComp x (B_addr l i) y

compact (B_comp x y) = B_comp x (compact y)
compact x = x

-- this is a subset of the code for the address sweep
-- (during parallelisation)

addrComp x addr y = addrCompRec x [addr] y

addrCompRec x (B_addr l i :addrs) (B_comp (B_alltup fs) y)
= addrCompRec x addrs (addrAT i fs y)

addrCompRec x addr (B_comp (B_addr l i) y)
= addrCompRec x (B_addr l i:addr) y

addrCompRec x [] y = add1 x y
addrCompRec x as (B_comp B_id y) = addrCompRec x as y
addrCompRec x as y = add1 x (addrCompRejoin (reverse as) y)
addrCompRejoin [] y = y
addrCompRejoin (a:as) y = B_comp a (addrCompRejoin as y)

-- create structure for if suffix

suffix [fs,gs] = struc2bmf (countStr (getSuffix (fs,gs)))

getSuffix (B_alltup fs, B_alltup gs) = atSuffix fs gs
getSuffix (B_alltup fs, y) = repNull fs
getSuffix (x, B_alltup gs) = repNull gs
getSuffix (x, y) = Addr

repNull xs = atSuffix xs (replicate (length xs) B_NULL)
atSuffix fs gs = Alltup 0 (map getSuffix (zip fs gs))

55



-- getStruct: create structure for prefix (and substitutions)

getStruct :: [B_exp] -> B_exp
getStruct attr = struc2bmf (countStr (struct2 attr Addr))

struct2 :: [B_exp] -> Structure -> Structure
struct2 [] str = str
struct2 (a:attr) str = struct2 attr (struct3 a str)

struct3 :: B_exp -> Structure -> Structure
struct3 (B_comp x (B_addr l (B_num i))) (Alltup n ss)

= Alltup n (subStruct x i ss)
struct3 (B_comp x (B_addr (B_num l) (B_num i))) Addr

= struct3 (B_comp x (ad l i)) (Alltup 0 (replicate l Addr))
struct3 (B_comp x (B_alltup fs)) str = struct2 fs str
struct3 x str = str

-- get appropriate element
subStruct :: B_exp -> Int -> [Structure] -> [Structure]
subStruct x idx (s:ss)

| b = ( struct3 x s : ss )
| not b = ( s : subStruct x (idx-1) ss)
where b=(idx<=1)

-- count elements at each level of structure

-- get to the top
countStr :: Structure -> Structure
countStr (Alltup i fs) = addStr (Alltup i (map countStr fs))
countStr Addr = Addr

-- sum from top to bottom
addStr (Alltup i fs) = Alltup (sum (map addStrs fs)) fs
addStrs (Alltup i fs) = i
addStrs Addr = 1

-- struc2bmf - create BMF expression from structure

struc2bmf :: Structure -> B_exp
struc2bmf (Alltup l fs) = B_alltup (s2bmf2 l 1 fs)
struc2bmf Addr = B_NULL

s2bmf2 n idx [] = []
s2bmf2 n idx (Alltup l fs :gs)

= (B_alltup (s2bmf2 n idx fs) : s2bmf2 n (idx+l) gs)
s2bmf2 n idx (Addr :gs) = (ad n idx : s2bmf2 n (idx+1) gs)

56



-- repStruct: replace addr’s with extended structure

repStruct :: B_exp -> B_exp -> B_exp

repStruct str (B_comp x (B_alltup fs))
= add1 x (B_alltup (map (repStruct str) fs))

repStruct (B_alltup fs) (B_comp x (B_addr l (B_num i)))
= repStruct (fs !! (i-1)) x

repStruct y x = add1 x y

-- flatten: removes nested alltups from lp expression

flatten (B_alltup fs) = B_alltup (flatten2 (B_alltup fs))
flatten x = x

flatten2 :: B_exp -> [B_exp]
flatten2 (B_alltup fs) = concat (map flatten2 fs)
flatten2 x = [x]

-- prefix - create 2nd part of identity - a flattened structure

prefix (B_alltup str) = B_alltup (prefix2 str)
prefix x = x

prefix2 str
= concat (map (prefix3 (length str)) (zip [1..(length str)] str))

prefix3 n (i,B_alltup fs) = map (revComp (ad n i)) (prefix2 fs)
prefix3 n (i,x) = [ad n i]

revComp x y = B_comp y x

-- reverse normalise - including inside alltups

revNorm x = revNorm3 (revNorm2 x)

revNorm2 (B_comp x (B_comp y z)) = revNorm2 (B_comp (B_comp x y) z)
revNorm2 (B_comp x y) = B_comp (revNorm2 x) y
revNorm2 x = B_comp B_TEMP x

revNorm3 (B_comp x (B_alltup fs))
= B_comp x (B_alltup (map revNorm fs))

revNorm3 x = x

57



-- remove the reverse B_TEMP - including from alltups

revSwp (B_comp x (B_alltup fs))
= revSwp2 (B_comp x (B_alltup (map revSwp fs)))

revSwp x = revSwp2 x

revSwp2 (B_comp B_TEMP x) = x
revSwp2 (B_comp x y) = B_comp (revSwp2 x) y
revSwp2 x = x

-- addr sweep - create list of addresses --
-------------------------------------------

addrSwp d x addr y = addrSwpRec d x [addr] y

-- apply to alltup if possible
addrSwpRec d x (B_addr l i :addrs) (B_comp (B_alltup fs) y)

= addrSwpRec d x addrs (addrAT i fs y)

-- try to push a split into a while/if
addrSwpRec d (P_split s t) [B_addr l i] (B_comp (B_while lp chk) x)

= addrWhIf d l i [chk,lp] x
addrSwpRec d (P_split s t) [B_addr l i] (B_comp (B_if cnd thn els) x)

= addrWhIf d l i [cnd,thn,els] x

-- found another address
addrSwpRec d x addr (B_comp (B_addr l i) y)

= addrSwpRec d x (B_addr l i:addr) y

-- remove id
addrSwpRec d x as (B_comp B_id y) = addrSwpRec d x as y

-- no more addresses in the list or the program
addrSwpRec d B_NULL [] y = append d y
addrSwpRec d x [] y = p d (B_comp x y)

-- addresses in list - replace them recursively
addrSwpRec d x as y = add1 x (addrSwpRejoin d (reverse as) y)

addrSwpRejoin d [] y = append d y
addrSwpRejoin d (a:as) y = B_comp a (addrSwpRejoin d as y)

58



-- replacements for scan and index parallelisations --
------------------------------------------------------

g a = B_comp
(B_op P_conc)
(B_alltup[

B_comp
(P_split (B_num 1)(B_num 0))
(B_comp

(B_op B_index)
(B_alltup[

ad 2 2,
B_con (B_int 0)])),

B_comp
(P_map (odot a))
(B_comp

(B_op (P_zip zipArg))
(B_alltup[

ad 2 1,
B_comp

(mytail)
(ad 2 2)]))])

odot a = B_comp
(B_map a)

(B_comp
(B_op (B_distl))
(B_alltup[ad 2 1,ad 2 2]))

mytail =
B_comp

(B_op P_select)
(B_alltup[

B_id
,
B_comp

(B_map(B_comp
(B_op (B_plus))
(B_alltup[

B_con (B_int 1),
B_id])))

(B_comp
(B_op (B_iota))

(B_comp
(B_op (B_minus))
(B_alltup[

B_op (B_length),
B_con (B_int 1)])))])

59



myinit = B_comp
(B_op P_select)
(B_alltup[

B_id,
B_comp

(B_op (B_iota))
(B_comp

(B_op (B_minus))
(B_alltup[B_op(B_length),B_con(B_int 1)]))])

mylast = B_comp
(B_op B_index)
(B_alltup[

B_id
,
B_comp

(B_op (B_minus))
(B_alltup[B_op(B_length),B_con(B_int 1)])])

jgen
= B_comp

(ad 2 1)
(B_comp

(P_reduce
(B_if (B_comp (ad 2 1) (ad 2 2))(ad 2 1)(ad 2 2)))

(B_comp
(B_op (P_zip zipArg))

(B_comp
(B_alltup[

B_comp
(P_map(

B_comp
(B_op B_minus)
(B_alltup[B_id,B_con (B_int 1)])))

(B_comp
(P_scan (B_op B_plus))
(P_map (B_con (B_int 1)))),

B_id])
(B_comp

(P_map (B_if (B_op B_lt)(B_con B_true)(B_con B_false)))
(B_comp

(B_op P_distl)
(B_alltup[

ad 2 2,
B_comp

(P_scan (B_op B_plus))
(B_comp

(P_map (B_op B_length))
(ad 2 1))]))))))

60



kgen
= B_comp

(P_reduce (B_if
(B_comp

(B_op B_lt)
(B_alltup[(ad 2 2),B_con (B_int 0)]))

(ad 2 1)
(ad 2 2)))

(B_comp
(P_map (B_op B_minus))

(B_comp
(B_op P_distl)
(B_alltup[

(ad 2 2)
,
B_comp

(B_op P_conc)
(B_comp

(B_alltup[
B_comp

(P_map (B_comp (B_op B_index)
(B_alltup[B_id,B_con (B_int 0)])))

(B_comp
(P_split (B_num 1) (B_num 0))
(B_allvec[B_con (B_int 0)]))

,
myinit
])

(B_comp
(P_scan (B_op B_plus))

(B_comp
(P_map (B_op B_length))

(ad 2 1))))])))

61


