
Constructing an Optimisation Phase
Using Grammatical Evolution

Brad Alexander and Michael Gratton

Alexander/Gratton

Outline

• Problem
• Current Approaches
• Experimental Aim
• Ingredients
• Experimental Setup
• Experimental Results
• Conclusions/Future Work

Alexander/Gratton

Problem

• Optimising compilers work in a complex design
space.
– Difficult for the author of the optimiser configure well for all

applications.
– Static design is always a compromise.

• A Solution:
– automatically adapt the optimiser to the set of programs it

compiles!

• Problem:
– the design space is huge and chaotic
– however, can search this space using heuristic methods.

Problem

Alexander/Gratton

Current Approaches

• Phase seqencing

Loop Invariant Hoisting

Common Subexpression Elimination

Dead Code Elimination

Block Reordering

Current Approaches

Alexander/Gratton

Current Approaches

• Phase seqencing

Loop Invariant Hoisting

Common Subexpression Elimination

Dead Code Elimination

Block Reordering

Current Approaches

Alexander/Gratton

Current Approaches

• Phase seqencing

Loop Invariant Hoisting

Common Subexpression Elimination

Dead Code Elimination

Block Reordering

Current Approaches

Alexander/Gratton

Current Approaches

• Phase seqencing

Loop Invariant Hoisting

Common Subexpression Elimination

Dead Code Elimination

Block Reordering

Current Approaches

Alexander/Gratton

Current Approaches

• Phase seqencing

Loop Invariant Hoisting

Common Subexpression Elimination

Dead Code Elimination

Block Reordering

Current Approaches

Alexander/Gratton

Current Approaches

• Parameter Tuning

Loop unroll factor:
Loop tiling factor:

3

2

Current Approaches

Alexander/Gratton

Current Approaches

• Parameter Tuning

Loop unroll factor:
Loop tiling factor:

4

3

Current Approaches

Alexander/Gratton

Current Approaches

• Evolution of Control Code

Register Allocation

Current Approaches

Alexander/Gratton

Current Approaches

• Evolution of Control Code

if(reg_size > &
spill_cost …)

Register Allocation

Current Approaches

Alexander/Gratton

Current Approaches

• Evolution of Control Code

Register Allocation if(reg_size > &
spill_cost …)

Current Approaches

Alexander/Gratton

Experimental Aim

• All current work assumes that optimisation phases
are pre-existing and atomic or parametric.

• Currently no work on the construction of these
phases from smaller components.

• Aim of this experiment is a proof of concept:
• To attempt to build a safe, substantial, and effective

optimisation phase using heuristic search.
– We use Grammatical Evolution (GE) a form of Genetic

Programming (GP).
– The genotype to phenotype encoding in GE constrains the

population to syntactically correct individuals.

Experimental Aim

Alexander/Gratton

Experimental Application

• Evolution of a phase of a compiler mapping a functional
language (Adl) to a hardware definition language (Bluespec).

• The target phase is the Data Movement Optimiser (DMO) that
reduces data flowing through a functional intermediate form
(point-free code).

• There is an extant hand-written DMO that:
– was non-trivial to construct.
– can be used as a source of building blocks.
– can be used as a benchmark

• The DMO is written in Stratego, a term-rewriting language
consisting of rewrite rules and strategies for their application.

Experimental Aim

Alexander/Gratton

Ingredients

• Three ingredients in any GP exercise:
1. The language grammar consisting of:

• terminals
• non terminals

2. The evolutionary framework.
3. The evaluation function

• We look at these in turn.

Ingredients

Alexander/Gratton

The Language Grammar (1)
• All individuals are expressed in Stratego
• Terminals

– Consist of simple rewrite rules e.g.
CompIntoMap: f* g* → (f g)*
MapIntoComp: (f g)* → f* g*
RemoveId: id f → f

– grouped together using the left choice (<+) operator e.g.
CompIntoMap <+ RemoveId

– Semantics: try applying CompIntoMap to current node and, if
that fails, try applying RemoveId.

• We use the same terminals as the handwritten DMO

Ingredients

Alexander/Gratton

The Language Grammar (2)

• Actual terminals include:
pushDownMap (vectorise)
pushDownComp (fuse loops)
simp (apply simplifying rules)
leftAssociate (left associate binary composition)
– In most contexts, the order of rules within a group is of minor

consequence
• If they can be applied they eventually will be applied.

– These terminals have little impact without strategies to apply
them.

Ingredients

Alexander/Gratton

The Language Grammar (3)

• Non-terminals are strategies for rule application.
– These take strategies or rule-groups as parameters and

apply the them to the target AST in some order.

• Examples include:
bottomup(s) : apply s to the current sub-tree bottomup
innermost(s) : apply s to the current sub-tree bottomup until it

can no longer be applied (fixpoint strategy)
s ; t : apply s to current sub-tree followed by t
repeatUntilCycle(s) : apply s to the current sub-tree until a result

seen before in this invocation is detected.

• Example:
bottomup(leftAssociate;innermost(simp))

Ingredients

Alexander/Gratton

The Evolutionary Framework

• We used LibGE in our experiments.
– A popular framework for developing GE applications.

• LibGE (based on LibGA) takes:
– A grammar definition and,
– A fitness function
– Some parameter settings

and handles:
– Population initialisation, application of the fitness function to

individuals, application of genetic operators, collection of
statistics and, genotype to phenotype mapping.

• The mapping works by using 8-bit numbers in the
genotype string to select productions in the language
grammar.

Ingredients

Alexander/Gratton

Fitness Function(1)

• Fitness is calculated by running evolved optimisers
against up to six benchmark programs and their data
against a dynamic cost-model.
– Benchmarks needed to be carefully chosen to require

multiple strategies and have a gradual gradient of difficulty.
• Fitness calculated relative to cost of hand-coded

DMO on each benchmark i (cost_opti):

• Average fitness evaluation takes 5 seconds. Zero
fitness for timeout or stack-overflow error.

Ingredients

Alexander/Gratton

Fitness Function(2)

• Hand Coded Benchmark:

Ingredients

Alexander/Gratton

Experimental Setup

• All grammar elements pre-compiled into stratego
libraries for faster running.

• Several runs conducted to tune fitness function.
• Final two runs:

– Population approximately 250 individuals
– Run for 80 generations and 63 generations respectively.
– LibGE settings: Max tree depth 15. Read of genome can

wrap-around twice.
– Mostly default LibGA settings (for GE): Roulette wheel

selection, 90% probability of crossover, 1% mutation
probability, 1% replacement ratio and elitism switched on.

Experimental Setup

Alexander/Gratton

Experimental Results (1)

• Both runs evolved individuals at least as good as the
handwritten DMO’s on the benchmarks.

Experimental Results

Alexander/Gratton

Experimental Results (2)

• Robustness
– Take the fittest individuals and expose them to thirty

benchmarks and measure their performances.
– Most did not generalise well but the fittest did slightly better

than hand coded optimiser.

• Correctness
– 500 fittest individuals collected and tested.
– None produced semantic errors.

• Code Size
– Best individuals very large with much redundancy.

Experimental Results

Alexander/Gratton

Conclusions and Future Work

• Evolving a non-trivial optimisation phase is feasible
– Good results for effectiveness, robustness and correctness.

• Future work includes:
– Pushing evolutionary process down to individual rules
– Controlling code-size and efficiency.
– Extending work to rewriting systems in other languages.

Conclusions

